Advertisement

Synthese

, Volume 89, Issue 2, pp 273–281 | Cite as

Determinism and predictability

  • N. G. Van Kampen
Article

Abstract

Theoretical determinism, as it is usually ascribed to Laplace, is neither verifiable nor falsifiable and has therefore no real content. It is not the same as predictability of actually observable phenomena. On the other hand, predictability is not an abstract principle; rather it is true to a certain degree, depending on the phenomena considered. It can be discussed only by examining the scientific state of affairs. This is done in some detail for classical statistical mechanics. Much of a recently published debate on determinism (Amsterdamski et al. 1990) is thereby obviated.

Keywords

Statistical Mechanic Scientific State Abstract Principle Observable Phenomenon Classical Statistical Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amsterdamski, S., H. Atlan, A. Danchin, I. Ekeland, J. Largeault, E. Morin, J. Petitot, K. Pomian, I. Prigogine, D. Ruelle, I. Stengers, and R. Thom: 1990, La Querelle du Déterminisme, Gallimard.Google Scholar
  2. Bell, J. S.: 1990, Physics World 3(8), 33–40.Google Scholar
  3. Duhem, P.: 1906, La Théorie Physique, son Objet et sa Structure, Chevalier et Rivière, Paris.Google Scholar
  4. Gibbs, J. W.: 1902, Elementary Principles in Statistical Mechanics, Yale University Press, New Haven.Google Scholar
  5. Horsthemke, W. and R. Lefever: 1985, Noise-Induced Transitions, Springer, Berlin.Google Scholar
  6. Kubo, R.: 1957, J. Phys. Soc. Japan 12, 570.Google Scholar
  7. Laplace, P. S.: 1814, Essai Philosophique sur les Probabilités, Mme Ve Courcier, Paris.Google Scholar
  8. Monod, J.: 1970, Le Hasard et la Nécessité, Seuil, Paris.Google Scholar
  9. Poincaré, H.: 1908, Science et Méthode, Flammarion, Paris, ch. 4.Google Scholar
  10. Prigogine, I. and I. Stengers: 1980, La Nouvelle Alliance, Gallimard, Paris (Order Out of Chaos, Bantam, New York, 1984).Google Scholar
  11. Van Hove, L.: 1955, ‘Quantum Mechanical Perturbations giving rise to a Statistical Transport Equation’, Physica 21, 517–40.Google Scholar
  12. Van Hove, L.: 1957, ‘The Approach to Equilibrium in Quantum Statistics’, Physica 23, 441–80.Google Scholar
  13. Van Kampen, N. G.: 1954, ‘Quantum Statistics of Irreversible Processes’, Physica 20, 603–22.Google Scholar
  14. Van Kampen, N. G.: 1981, Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam.Google Scholar
  15. Van Kampen, N. G.: 1988, ‘Ten Theorems about Quantum Mechanical Measurements’, Physica 153, 97–113.Google Scholar
  16. Zwanzig, R.: 1960, ‘Ensemble Method in the Theory of Irreversibility’, J. Chem. Phys. 33, 1338–41.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • N. G. Van Kampen
    • 1
  1. 1.Institute For Theoretical PhysicsUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations