, Volume 82, Issue 1, pp 127–155 | Cite as

Quantum statistics, identical particles and correlations

  • Dennis Dieks


It is argued that the symmetry and anti-symmetry of the wave functions of systems consisting of ‘identical particles’ have nothing to do with the observational indistinguishability of these particles. Rather, a much stronger ‘conceptual indistinguishability’ is at the bottom of the symmetry requirements. This can be used to argue further, in analogy to old arguments of De Broglie and Schrödinger, that the reality described by quantum mechanics has a wave-like rather than particle-like structure. The question of whether quantum statistics alone can give rise to empirically observable correlations between results of distant measurements is also discussed.


Wave Function Quantum Mechanic Quantum Statistic Distant Measurement Identical Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ehrenfest, P.: 1911, ‘Welche Züge der Lichtquantenhypothese spielen in der Theorie der Wärmestrahlung eine wesentliche Rolle?’, Ann. d. Phys. 36, 91; Ehrenfest, P. and H. Kamerlingh Onnes: 1914, ‘Simplified Deduction of the Formula from the Theory of Combinations which Planck Uses as the Basis of his Radiation Theory’, Proc. Amsterdam Acad. 17, 870; also in M. J. Klein (ed.): 1959, Paul Ehrenfest, Collected Scientific Papers, North-Holland, Amsterdam.Google Scholar
  2. [2]
    Bose, S. N.: 1924, ‘Plancks Gesetz und Lichtquantenhypothese’, Z. Phys. 26, 178; English translation, 1976, Am. J. Phys. 44, 1056.Google Scholar
  3. [3]
    Einstein, A.: 1924, ‘Quantentheorie des einatomigen idealen Gases’, Sitz. ber. Preuss. Akad. Wiss., 261.Google Scholar
  4. [4]
    Einstein, A.: 1925, ‘Quantentheorie des einatomigen idealen Gases; 2. Abhandlung’, Sitz. ber. Preuss. Akad. Wiss., 3.Google Scholar
  5. [5]
    Hanle, P. A.: 1979, ‘The Schrödinger-Einstein Correspondence and the Sources of Wave Mechanics’, Am. J. Phys. 47, 644.Google Scholar
  6. [6]
    Schrödinger, E.: 1926, ‘Zur Einsteinschen Gastheorie’, Phys. Z. 27, 95.Google Scholar
  7. [7]
    Debije, P.: 1910, ‘Der Wahrscheinlichkeitsbegriff in der Theorie der Strahlung’, Ann. d. Phys. 33, 1427.Google Scholar
  8. [8]
    de Broglie, L.: 1924, ‘Recherches sur la théorie des quanta’, Ann. de Phys. 3, 22.Google Scholar
  9. [9]
    Bergia, S.: 1983, ‘Who Discovered the Bose-Einstein Statistics?’, Conf. Proc.Symmetries in Physics (1600–1980)’, San Feliu de Guixols; S. Bergia, C. Ferrario, and V. Monzoni: 1985, ‘Side Paths in the History of Physics: The Idea of Light Molecule from Ishiwara to De Broglie’, Riv. Stor. Sci. 2, 71.Google Scholar
  10. [10]
    Wessels, L.: 1979, ‘Schrödinger's Route to Wave Mechanics’, Stud. Hist. Phil. Sci. 10, 311.Google Scholar
  11. [11]
    Schrödinger, E.: 1926, ‘Quantisierung als Eigenwertproblem, 1. Mitteilung’, Ann. d. Phys. 79, 361.Google Scholar
  12. [12]
    A seminal paper here is Messiah, A. and O. W. Greenberg: 1964, ‘Symmetrization Postulate and Its Experimental Foundation’, Phys. Rev. B136, 284.Google Scholar
  13. [13]
    Pauli, W.: 1940, The Connection Between Spin and Statistics’, Phys. Rev. 58, 716.Google Scholar
  14. [14]
    Kaplan, I. G.: 1975, ‘The Exclusion Principle and Indistinguishability of Identical Particles in Quantum Mechanics’, Sov. Phys. Usp. 18, 988.Google Scholar
  15. [15]
    Sarry, M. F.: 1979, ‘Permutation Symmetry of Wave Functions of a System of Identical Particles’, Sov. Phys. JEPT 50, 678.Google Scholar
  16. [16]
    See, for instance: Dirac, P. A. M.: 1958, The Principles of Quantum Mechanics, Clarendon Press, Oxford, p. 207; C. Cohen-Tannoudji, B. Din, and F. Laloë: 1973, Mechanique Quantique, Hermann, Paris, p. 1382.Google Scholar
  17. [17]
    French, S. and M. Redhead: 1988, ‘Quantum Physics and the Identity of Indiscernibles’, Br. J. Phil. Sci. 39, 233.Google Scholar
  18. [18]
    Redhead, M.: 1983, ‘Quantum Field Theory for Philosophers’, in PSA 1982, vol. 2, P. Asquith and T. Nickles (eds.), Philosophy of Science Association, East Lansing, Michigan.Google Scholar
  19. [19]
    Redhead, M.: 1988, ‘A Philosopher Looks at Quantum Field Theory’, in H. Brown and R. Harré (eds.), Philosophical Foundations of Quantum Field Theory, Clarendon Press, Oxford.Google Scholar
  20. [20]
    van Fraassen, B.: 1984, ‘The Problem of Indistinguishable Particles’, in J. Cushing, C. Delaney, and G. Gutting (eds.), Science and Reality, University of Notre Dame Press, Notre Dame, Indiana.Google Scholar
  21. [21]
    van Fraassen, B.: 1972, ‘Probabilities and the Problem of Individuation’, Probabilities, Problems and Paradoxes, S. Luckenbach (ed.), Dickenson, Encino, p. 121.Google Scholar
  22. [22]
    Einstein, A.: 1909, ‘Zum gegenwärtigen Stand des Strahlungsproblems’, Phys. Z. 10, 185.Google Scholar
  23. [23]
    Peres, A.: 1988, ‘Schrödinger's Immortal Cat’, Found. Phys. 18, 57; and references contained therein.Google Scholar
  24. [24]
    van Fraassen, B.: 1985, ‘Salmon on Explanation’, J. Phil. 82, 639.Google Scholar
  25. [25]
    Dieks, D.: 1988, ‘The Formalism of Quantum Theory: An Objective Description of Reality?’, Ann. d. Phys. 45, 174; Dieks, D.: 1989, ‘Quantum Mechanics and Realism’, Conceptus 23, 31; Dieks, D.: 1989, ‘Quantum Mechanics Without the Projection Postulate and its Realistic Interpretation’, Found. Phys. 19, 1395.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Dennis Dieks
    • 1
  1. 1.Department of History and Foundations of ScienceState University of UtrechtUtrechtThe Netherlands

Personalised recommendations