Contributions to Mineralogy and Petrology

, Volume 91, Issue 3, pp 235–244 | Cite as

A chlorite solid solution geothermometer the Los Azufres (Mexico) geothermal system

  • Michel Cathelineau
  • David Nieva


Chlorite constitutes a major hydrothermal alteration product of metamorphism of andesites, in the active geothermal system of Los Azufres (Mexico). Electron microprobe analyses performed on a set of crystals from each sample show wide variations in composition. Correlation coefficients among chemical constituents were calculated. It is shown that the tetrahedral charge is positively correlated with the octahedral vacancy and negatively with the iron content, and there is almost no correlation with the octahedral aluminium and magnesium content. A procedure is proposed to select end-members and substitution vectors, and to give a general formula for these chlorites.

Their formation temperatures are estimated with great accuracy, combining results of microthermometric data on fluid inclusions from gangue minerals of chlorites (quartz, calcite), direct measurements in wells (Kuster equipment), and chemical geothermometers. Correlations between chlorite compositions, range and nature of site occupancy, and temperature are good. Formation temperatures of chlorites range from 130° C to 300° C. As no other thermodynamic parameter varies significantly in the studied field (composition of the host rocks, nature of the geothermal fluids, pressure, ...), these variations of site occupancy (mainly Al(IV) and the octahedral occupancy (6-Al(VI)-(Mg+Fe(2+)) = VAC) are considered mainly as temperature dependent.

Molar fractions of each end-member show very different variations with increasing temperature: X-kaolinite decreases, and X-chamosite increases, while X-talc-3 brucite does not show significant change. From these data, activity coefficients and standard state chemical potential of major components, and molar free energy formation of chlorite have been calculated for each temperature of crystallisation.


Chlorite Fluid Inclusion Brucite Site Occupancy Geothermal System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aagard P, Helgeson NC (1983) Activity/composition relations among silicates and aqueous solutions: II Chemical and thermodynamic consequences of ideal mixing of atoms on homological sites in montmorillonites, illites and mixed-layer clays. Clays Clay Miner 31:207–217Google Scholar
  2. Bragg VM (1937) Atomic Structure of Minerals. Cornell University Press, IthacaGoogle Scholar
  3. Bragg VM, Claringbull GF (1965) Crystal Structures of Minerals. Bell and Sons, LondonGoogle Scholar
  4. Brown G (1961) X-ray identification and crystal structures of clay minerals, vol XI, pp 478–479. Mineral Soc LondonGoogle Scholar
  5. Browne PRL, Ellis AJ (1970) The Ohaki-Broadlands hydrothermal area, New Zealand: Mineralogy and related geochemistry. Am J Sci 269:97–131Google Scholar
  6. Camacho P (1976) Mapa preliminar del area geotermica de Los Azufres, Michoacan. Comision Federal de Electricidad, Internal Report. Unpublished, Mexico CityGoogle Scholar
  7. Cathelineau M (1981) Les gisements d'uranium liés spatialement aux leucogranites sudarmoricains et à leur encaissant métamorphique. Sci de la Terre, Mem 42Google Scholar
  8. Cathelineau M (1983a) Potassic alteration in French hydrothermal uranium deposits. Mineral Deposita 18:89–97Google Scholar
  9. Cathelineau M (1983b) Les minéraux phylliteux dans les gisements hydrothermaux d'uranium français. II Distribution et évolution cristallochimique des illites, interstratifiés, smectites et chlorites. Bull Mineral 106:553–569Google Scholar
  10. Cathelineau M (1985) Quartz leaching and hydrothermal alkali metasomatism in granites. J Petrol (in press)Google Scholar
  11. Cathelineau M, Oliver R, Izquierdo G, Garfias A, Nieva D, Izaguirre O (1983) Mineralogy and distribution of hydrothermal mineral zones in the Los Azufres (Mexico) geothermal field. Proc Ninth Annual Workshop on Geothermal Reservoir Engineering, Stanford University, Palo Alto, California, Dec 13–15Google Scholar
  12. Cathelineau M, Nieva D, Garfias A (1984) Active metamorphism of the Los Azufres geothermal system (Michoacan, Mexico): Mineralogy, geochemistry and mineral equilibria. Abstr 27th Int Geol Congress, MoscowGoogle Scholar
  13. Cathelineau M, Oliver R, Garfias A, Nieva O (1985) Mineralogy and distribution of hydrothermal mineral zones in the Los Azufres (Mexico) geothermal field. Geothermics 14:49–57Google Scholar
  14. Cavaretta G, Gianelli G, Pudexxu M (1982) Formation of authigenic minerals and their use as indicators of the chemicophysical parameters of the fluid in the Larderello-Travale geothermal field. Econ Geol 77:1071–1084Google Scholar
  15. Combredet N (1983) Etude du puits Al du champ geothermique de Los Azufres (Michoacan, Mexique). 3rd Cycle thesis, ParisGoogle Scholar
  16. Creasey SC (1959) Some phase relations in hydrothermally altered rocks of porphyry copper deposits. Econ Geol 54:351–373Google Scholar
  17. Cuney M (1981) Comportement de l'uranium et du thorium au cours du metamorphisme — Role de l'anatexie dans la genèse des magmas riches en radioéléments. Unpublished thesis. INPL Nancy, 520 pGoogle Scholar
  18. Deer WA, Howie RA, Zussman J (1962) Rock forming minerals. 3. Sheet silicates, Wiley, New York p 270Google Scholar
  19. Dunoyer de Segonzac G (1970) The transformation of clay minerals during diagenesis and low grade metamorphism. A review. Sedimentology 15:281–346Google Scholar
  20. Duplay J (1982) Analyses chimiques de populations de particules argileuses. Unpublished third cycle thesis. Univ PoitiersGoogle Scholar
  21. Elders WA, Hoagland JR, Williams AE (1981) Distribution of hydrothermal mineral zones in the Cerro Prieto geothermal field of Baja California, Mexico. Geothermics 10:245–253Google Scholar
  22. Foster MD (1962) Interpretation of the composition and a classification of the chlorites. US Geol Surv Prof Pap 414A, pp 27Google Scholar
  23. Fournier RO, Potter RW (1982) A revised and expanded silica (quartz) geothermometer. GRC Bull Nov, p 3Google Scholar
  24. Fournier RO, Truesdell AH (1973) “An empirical Na-K-Ca geothermometer for natural waters”. Geochim Cosmochim Acta 37:1255–1275Google Scholar
  25. Fritz B (1981) Etude thermodynamique et modélisation des réactions hydrothermales et diagénétiques. Sci Geol Mem 65:197Google Scholar
  26. Gutierrez NA, Aumento F (1982) The Los Azufres, Michoacan, Mexico, Geothermal field. J Hydrol 56:137–162Google Scholar
  27. Helgeson HC, Delany JM, Nesbitt HW, Biro OK (1978) Summary and critique of the thermodynamic properties of rock forming minerals. Am J Sci Vol 278 A, 229 pGoogle Scholar
  28. Hey MH (1964) A review of chlorites. Mineral Mag 30:277–292Google Scholar
  29. Hower J, Eslinger EV, Hower ME, Perry EA (1976) Mechanism of burial metamorphism of argillaceous sediments. Mineralogical and chemical evidence. Geol Soc Am Bull 87:725–737Google Scholar
  30. Leroy J, Cathelineau M (1982) Les minéraux phylliteux dans les gisements hydrothermaux d'uranium I les micas hérités et néoformés. Bull Minerl 105:99–109Google Scholar
  31. Lowell JD, Guilbert JM (1970) Lateral and vertical alteration, mineralogy, zoning in porphyry ore deposits. Econ Geol 65:373–408Google Scholar
  32. Marignac C (1981) The metallic ore veins of Ain Barbar (Algeria) as consequence of alpine geothermal activity, In: Schneider (Ed) Mineral deposits of the Alps. Springer Berlin Heidelberg New York, pp 298–312Google Scholar
  33. Marignac C (1985) Les minéralisations filoniennes d'Aïr Barbar (Algérie): un exemple d'hydrothermalisme lié à l'activité géo thermique alpine en Afrique du Nord. Thesis INPL, 1200 pGoogle Scholar
  34. McDowell SD, Elders WA (1980) Authigenic layer silicate minerals in borehole Elmore 1, Salton Sea geothermal field, California. Contrib Mineral Petrol 74:293–310Google Scholar
  35. Miyashiro A (1973) Metamorphism and metamorphic belts. Wiley and Sons, New YorkGoogle Scholar
  36. Muffler LPJ, White DE (1969) Active metamorphism of Upper Cenozoic sediments in the Salton Sea geothermal field and the Salton Trough, Southeastern California. Geol Soc Am Bull 80:157–182Google Scholar
  37. Nieva D, Qijana L, Garfias A N RM, Laredo F (1983) Heterogeneity of the liquid phase, and vapor separation in Los Azufres (Mexico) geothermal reservoir. Proceedings Ninth Workshop Geothermal Reservoir Engineering. Stanford University, California, SGP-TR-74Google Scholar
  38. Oliver R (1981) Geologia de la Zona Geotermica de Los Azufres, Michoacan. Unpublished. IPN Thesis, MexicoGoogle Scholar
  39. Pascal ML (1984) Les albitites du Massif de l'Agly (Pyrénées Orientales). 3rd cycle thesis, ENSM ParisGoogle Scholar
  40. Poty B, Leroy J, Jachimowicz L (1976) Un nouvel appareil pour la mesure de températures sous le microscope, l'installation de microthermometrie Chaix-Meca. Bull Soc Fr Mineral Cristallogr 99:182–186Google Scholar
  41. Poty B (1969) La croissance des cristaux de quartz dans les filons sur l'exemple du filon de la Gardette (Bourg d'Oisans) et des filons du Massif du Mont Blanc. Sci de la Terre, Mem 17Google Scholar
  42. Shirozu H (1978) Chlorite minerals, In: Developments in sedimen tology, vol 26, pp 243–264. Elsevier, Amsterdam Oxford New YorkGoogle Scholar
  43. Steiner A (1977) The Wairakei geothermal area, North Island, New Zealand: its subsurface geology and hydrothermal rock alteration. New Zealand Geol Surv Bull 90:136Google Scholar
  44. Stoessel RK (1979) A regular solution site-mixing model for illites. Geochim Cosmoch Acta 43:1151–1159Google Scholar
  45. Stoessel RK (1981) Refinements in a site-mixing model for illites: local electrostatic balance and the quasi-chemical approximation. Geochim Cosmochim Acta 45:1733–1741Google Scholar
  46. Stoessel RK (1984) Regular solution site-mixing model for chlorites. Clays Clay Miner 32:205–212Google Scholar
  47. Tardy Y, Garrels RM (1974) A method of estimating the Gibbs energies of formation of layer silicates. Geochim Cosmochim Acta 38:1101–1116Google Scholar
  48. Tardy Y, Fritz B (1981) An ideal solid solution model for calculating solubility of clay minerals. Clay Miner 16:361–373Google Scholar
  49. Tardy Y, Duplay J, Fritz B (1981) Chemical composition of individual clay particles: an ideal solid solution model. Intern Clay Conf Developements in sedimentology, 35:441–450Google Scholar
  50. Taylor GL, Ruotsala AP, Keeling Jr RO (1968) Analysis of iron in layer silicates by Mössbauer spectroscopy. Clays Clay Miner Proc 16:381–391Google Scholar
  51. Tomasson J, Kristmannsdottir H (1972) High temperature alteration minerals and thermal brines, Reykjanes, Iceland. Contrib Mineral Petrol 36:123–134Google Scholar
  52. Thompson JR Jr, Thompson AB (1976) A model system for mineral facies in pelitic schists. Contrib Mineral Petrol 58:3–55Google Scholar
  53. Thompson JB Jr, Laird J, Thompson AB (1982) Reactions in amphibolite, greenschist and blueschist. J Petrol 58:1–27Google Scholar
  54. Velde B (1977) Clays and clay minerals in natural and synthetic systems. Developments in Sedimentology, Vol 21. Elsevier, Amsterdam Oxford New YorkGoogle Scholar
  55. Verma SP (1983) Magma genesis and chamber processes at Los Humeros Caldera Mexico. Nd and Sr isotope area. Nature 301:52–55Google Scholar
  56. Walshe JL, Solomon M (1981) An investigation into the environment of formation of the volcanic hosted Mt Lyell copper deposits using geology, mineralogy, stable isotopes and a six component chlorite solid solution model. Econ Geol 76:246–284Google Scholar
  57. Weaver CE, Pollard LD (1973) The chemistry of clay minerals. Developments in sedimentology, vol 15, Elsevier, Amsterdam Oxford New York pp 213Google Scholar
  58. Yerle JJ (1978) Albitisations et mineralisations uranifères dans le socle et les sediments permo-houillers du Bassin de Brousse Broquiès (Aveyron, France). 3rd Cycle thesis. ENSM ParisGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Michel Cathelineau
    • 1
  • David Nieva
    • 2
  1. 1.Centre de Recherches sur la Geologie de l'UraniumVandoeuvre-les-Nancy CédexFrance
  2. 2.Instituto de Investigaciones ElectricasCuernavacaMexico

Personalised recommendations