Archives of Microbiology

, Volume 138, Issue 2, pp 96–101

Chloroherpeton thalassium gen. nov. et spec. nov., a non-filamentous, flexing and gliding green sulfur bacterium

  • Jane Gibson
  • Norbert Pfennig
  • John B. Waterbury
Original Papers

Abstract

A flexing and gliding green sulfur bacterium has been isolated from marine sources off the North East coast of the USA. Chloroherpeton thalassium is an obligate phototroph, and requires CO2 and S2- for growth; some organic acids can contribute to cell carbon, and N2 may be fixed. The cells contain typical chlorosomes, and gas vesicles may be present. Bacteriochlorophyll c is the main light harvesting pigment, and a small quantity of bacteriochlorophyll a is also present. Over 80% of the carotenoid is γ-carotene. DNA base composition of the isolates ranges from 45.0–48.2 mol% G+C.

Key words

Green sulfur bacterium Flexing Gliding Obligate phototroph Bacteriochlorophyll c 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohen-Bazire G, Sistrom WR, Stanier RY (1957) Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 49:25–35Google Scholar
  2. Dubinina GA, Gorlenko VM (1975) New filamentous photosynthetic green bacteria containing gas vacuoles. Mikrobiologiya 44:452–468Google Scholar
  3. Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chu KN, Woese CR (1980) The phylogeny of prokaryotes. Science 209:357–463Google Scholar
  4. Gibson J (1979) Phylogenetic relationships of photosynthetic bacteria based on 16 S ribosomal RNA catalogues. In: Halvorson HO, van Holde KE (eds) Origin of life and evolution. Alan Liss, New York, pp 97–102Google Scholar
  5. Gorlenko VM (1975) Characteristic filamentous phototrophic bacteria from freshwater lakes. Mikrobiologiya 44:682–684Google Scholar
  6. Gorlenko VM, Pivovarova TA (1977) On the belonging of blue-green alga Oscillatoria coerulescens Gicklhorn 1921 to a new genus of chlorobacteria Oscillochloris Nov. gen. Izvest Akad Nauk SSSR Ser Biol, pp 396–409Google Scholar
  7. Herdman M, Janvier M, Waterbury JB, Rippka R, Stanier RY (1979) Deoxyribonucleic acid base composition of cyanobacteria. J Gen Microbiol 111:63–71Google Scholar
  8. Hoare DS, Gibson J (1964) Photoassimilation of acetate and the biosynthesis of amino acids by Chlorobium thiosulfatophilum. Biochem J 91:546–559Google Scholar
  9. Ihlenfeldt MJA, Gibson J (1977) Acetate uptake by the unicellular cyanobacteria Synechococcus and Aphanocapsa. Arch Microbiol 113:231–241Google Scholar
  10. Jensen A, Aasmundrud O, Eimjhellen KE (1964) Chlorophylls of photosynthetic bacteria. Biochim Biophys Acta 88:466–479Google Scholar
  11. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  12. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218Google Scholar
  13. Marmur J, Doty P (1963) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118Google Scholar
  14. van Niel CB (1932) On the morphology and physiology of the purple and green sulfur bacteria. Arch Mikrobiol 3:2–112Google Scholar
  15. Pfennig N, Lippert K-D (1966) Über das Vitamin-B12-Bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol 55:245–256Google Scholar
  16. Pfennig N, Trüper HG (1974) The phototrophic bacteria. In: Buchanan RE, Gibbons NE (eds) Bergey's manual of determinative bacteriology, 8th ed. Williams and Wilkins, Baltimore, pp 24–75Google Scholar
  17. Pfennig N, Trüper HG (1981) Isolation of members of the families Chromatiacea and Chlorobiacae. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes, vol 1. Springer, Berlin Heidelberg New York, pp 279–289Google Scholar
  18. Pierson BK, Castenholz RW (1974a) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus gen. and spec. nov. Arch Microbiol 100:5–24Google Scholar
  19. Pierson BK, Castenholz RW (1974b) Studies of pigments and growth in Chloroflexus aurantiacus, a phototrophic filamentous bacterium. Arch Microbiol 100:283–305Google Scholar
  20. Pivovarova TA, Gorlenko VM (1977) Fine structure of Chloroflexus aurantiacus var mesophilus (nom. prof.). Growth in light under aerobic and anaerobic conditions. Mikrobiologiya 46:276–282Google Scholar
  21. Rippka R, Waterbury J, Cohen-Bazire G (1974) A cyanobacterium which lacks thylakoids. Arch Microbiol 100:419–436Google Scholar
  22. Sadler WR, Stanier RY (1960) The function of acetate in photosynthesis by green bacteria. Proc Nat Acad Sci USA 46:1328–1334Google Scholar
  23. Schmidt K (1980) A comparative study on the composition of chlorosomes (Chlorobium vesicles) and cytoplasmic membranes from Chloroflexus aurantiacus strain Ok-70-fl and Chlorobium limicola f. thiosulfatophilum strain 6230. Arch Microbiol 124:21–31Google Scholar
  24. Staehelin LA, Golecki JR, Fuller RC, Drews G (1978) Visualization of the supramolecular architecture of chlorosomes (Chlorobium-type vesicles) in freeze fractured cells of Chloroflexus aurantiacus. Arch Microbiol 119:269–277Google Scholar
  25. Trüper HG (1976) Higher taxa of the phototrophic bacteria: Chloroflexaceae fam. nov., a family for the gliding, filamentous phototrophic “green” bacteria. Int J Syst Bacteriol 26:74–75Google Scholar
  26. Trüper HG, Pfennig N (1978) Taxonomy of the Rhodospirillales. In: The photosynthetic bacteria. Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum Press, New York, pp 19–27Google Scholar
  27. Walsby AE (1972) Structure and function of gas vacuoles. Bacteriol Rev 36:1–32Google Scholar
  28. Walsby AE (1976) The buoyancy-providing role of gas vacuoles in an aerobic bacterium. Arch Microbiol 109:135–142Google Scholar
  29. Widdel F (1980) Anaerober Abbau von Fettsäuren und Benzoesäure durch neuisolierte Arten Sulfat-reduzierender Bakterien. Diss Univ GöttingenGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Jane Gibson
    • 1
  • Norbert Pfennig
    • 2
  • John B. Waterbury
    • 3
  1. 1.Section of Biochemistry, Molecular and Cell Biology, Division of Biological SciencesCornell UniversityIthacaUSA
  2. 2.Faculty of BiologyUniversity of KonstanzKonstanzFRG
  3. 3.Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations