Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Purine biosynthesis in Staphylococcus aureus

  • 83 Accesses

  • 3 Citations


The auxanographic analysis of 67 purine-dependent mutants and chromatographic analysis of their culture fluids were used to study purine biosynthesis in Staphylococcus aureus. The de novo biosynthesis of IMP from SAICAR, and the conversion of IMP to AMP and GMP were shown to occur via the conventional pathways reported for other organisms. Mutants blocked prior to the formation of SAICAR could not be differentiated by the tests used, and no substantial information on this portion of the pathway was obtained. The auxanographic characteristics of double mutants requiring both histidine and purines provided evidence that the sole route whereby S. aureus can convert AMP to IMP (and hence to GMP) is via those reactions of the histidine biosynthetic pathway leading to the formation of IGP and AICAR. In addition, we were able to mutationally separate AICAR transformylase and inosinocase; this separation has not been accomplished in other microorganisms.

This is a preview of subscription content, log in to check access.


  1. Ames, B. N., Mitchell, H. K.: The paper chromatography of imidazoles. J. Amer. chem. Soc. 74, 252–253 (1952).

  2. Carere, A., Spada-Sermonti, I.: Nutritional mutations and transduction by ultraviolet-inactivated phage in Staphylococcus aureus. J. Bact. 88, 226–232 (1964).

  3. Chiasson, L. P., Zamenhof, S.: Studies on induction of mutations by heat in spores of Bacillus subtilis. Canad. J. Microbiol. 12, 43–46 (1966).

  4. Flaks, J. G., Erwin, M. J., Buchanan J. M.: Biosynthesis of the purines. XVII. Further studies of the inosinic acid transformalyse system. J. biol. Chem. 228, 215–229 (1957).

  5. ———: Biosynthesis of the purines. XVIII. 5-amino-1-ribosyl-4-imidazole carbox-amide-5-phosphate transformylase and inosinicase. J. biol. Chem. 229, 603–612 (1958).

  6. Kloos, W. E., Pattee, P. A.: Biochemical analysis of histidine biosynthesis in Staphylococcus aureus. J. gen. Microbiol. 39, 183–194 (1965).

  7. Lederberg, J., Lederberg, E. M.: Replica plating and indirect selection of bacterial mutants. J. Bact. 63, 399–406 (1952).

  8. Love, S. H., Gots, J. S.: Purine metabolism in bacteria. III. Accumulation of a new pentose-containing arylamine by a purine-requiring mutant of Escherichia coli. J. biol. Chem. 212, 647–654 (1955).

  9. Magasanik, B.: Biosynthesis of purine and pyrimidine nucleotides. In: I. C. Gunsalus and R. Y. Sanier (ed.): The bacteria. III: Biosynthesis. New York: Academic Press, Inc. 1962.

  10. Pattee, P. A., Baldwing, J. N.: Transduction of resistance to chlortetracycline and novobiocin in Staphylococcus aureus. J. Bact. 82, 875–881 (1961).

  11. Peabody, R. A., Goldthwait, D. A., Greenberg, G. R.: The structure of glycinamide ribotide. J. Biol. Chem. 221, 1071–1081 (1956).

  12. Sanderson, K. E.: Revised linkage map of Salmonella typhimurium. Bact. Rev. 31, 354–372 (1967).

  13. Shaw, E.: A new synthesis of the purines adenine, hypoxanthine, xanthine, and isoguanine. J. biol. Chem. 196, 499–512 (1950).

  14. Stouthamer, A. H., Haan, P. G. de, Nijkamp, H. J. J.: Mapping of purine markers in Escherichia coli K-12. Genet. Res. 6, 442–453 (1965).

  15. Westby, C. A., Gots, J. S.: Genetic blocks and unique features in the biosynthesis of phosphoribiosyl-N-formyl-glycinamide in Salmonella typhimurium. J. Biol. Chem. 244, 2095–2102 (1969).

  16. Wood, R. C., Steers, E.: Study of the purine metabolism of Staphylococcus aureus. J. Bact. 77, 760–765 (1959).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baxter-Gabbard, K.L., Pattee, P.A. Purine biosynthesis in Staphylococcus aureus . Archiv. Mikrobiol. 71, 40–48 (1970). https://doi.org/10.1007/BF00412233

Download citation


  • Histidine
  • Staphylococcus Aureus
  • Purine
  • Staphylococcus
  • Biosynthetic Pathway