Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Laminar non-Newtonian flow in a porous pipe

  • 49 Accesses

  • 6 Citations

Summary

The problem of flow of certain non-Newtonian liquids in a porous pipe is discussed by introducing second order terms in the stress-strain velocity relations of classical hydrodynamics. The Navier-Stokes equations resulting therefrom for the system have been solved exactly to obtain a complete description of the non-Newtonian flow. The analysis has been limited to two-dimensional steady-state laminar flow. The solution of the flow equations leads to detailed expressions for the dependence of the velocity components and the pressure on position coordinates, dimensions of the pipe and fluid properties.

This is a preview of subscription content, log in to check access.

Abbreviations

a :

radius of the porous pipe

p(x, λ) :

pressure in the pipe at the point (x, λ)

u(x, λ) :

velocity component in the x-direction at the point (x, λ) in the channel

ū 0 :

x-component of the velocity, averaged over the pipe cross-section at the entrance of the pipe x=0

v(x, λ) :

λ component of velocity at the point (x, λ) in the pipe

v w :

cross-flow velocity of the fluid at the wall

R :

Reynolds number for the flow through the pipe wall, R=av w /ν

N Re :

Reynolds number for flow entering the pipe through the inlet, N Re= 0/ν

λ :

dimensionless distance parameter, r/a

μ :

fluid viscosity

ν :

kinematic viscosity (μ/ρ)

μ 1 :

cross-viscosity

ν 1 :

kinematic cross-viscosity (μ 1/ρ)

K=ν 1/a 2 :

dimensionless parameter

ψ :

Stokes stream function

Ψ :

dimensionless stream function

References

  1. 1)

    Olson, F. C. W., J. Appl. Mech. 16 (1949) 53.

  2. 2)

    Berman, A. S., J. Appl. Phys. 24 (1953) 1232.

  3. 3)

    Berman, A. S., J. Appl. Phys. 27 (1956) 1557.

  4. 4)

    Berman, A. S., Proc. 2nd Intern. Congr. Peaceful Uses of atomic Energy, Geneva Vol. 4 (1958) 351.

  5. 5)

    Yuan, S. W., J. Appl. Phys. 27 (1956) 267; S. W. Yuan and A. B. Finkelstein, Trans. Amer. Soc. Mech. Engrs 78 (1956) 719.

  6. 6)

    Sellars, J. R., J. Appl. Phys. 26 (1955) 489.

  7. 7)

    Donoughe, Patrick, L., NACA T.N. 3759, August 1956.

  8. 8)

    Morduchow, M., Quart. J. Appl. Math. 14 (1957) 361.

  9. 9)

    Narasimhan, M. N. L., Z. angew. Math. Mech 41 (1961) 44.

  10. 10)

    Rivlin, R. S., Proc. Roy. Soc. London A 193 (1948) 260.

  11. 11)

    Reiner, M., Quart. J. Mech. Appl. Math. No. 1164 (1952) 16.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Narasimhan, M.N.L. Laminar non-Newtonian flow in a porous pipe. Appl. sci. Res. 10, 393 (1961). https://doi.org/10.1007/BF00411933

Download citation

Keywords

  • Axial Velocity
  • Poiseuille Flow
  • Entrance Region
  • Flow Reynolds Number
  • Parabolic Profile