Archive for History of Exact Sciences

, Volume 41, Issue 2, pp 171–184 | Cite as

Robert Adrain and the method of least squares

  • Jacques Dutka


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Abbe, Cleveland, “Historical Note on the the method of least squares”, American Journal of Science, Vol. 1 (1871), 411–415. Repr. in Stigler [1].Google Scholar
  2. (1).
    Adrain, Robert, “Article XIV. Research concerning the probabilities of the errors ...,” The Analyst or Mathematical Museum, Vol. 1 (1808), 93–108. Repr. in Stigler [1].Google Scholar
  3. (2).
    Adrain, Robert, “Investigation of the Figure of the Earth, and of the Gravity in Different Latitudes,” Transactions of the American Philosophical Society, Vol. 1, N.S. (1818), 119–135. Repr. in Stigler [1].Google Scholar
  4. (3).
    Adrain, Robert, “Research Concerning the Mean Diameter of the Earth,” Ibid., , 353–366, (1818). Repr. in Stigler [1].Google Scholar
  5. (1).
    Bowditch, N., “Article XIII. Solution of Mr. Patterson's Prize Question for correcting a survey ...”, The Analyst or Mathematical Museum, Vol. I (1808), 88–93.Google Scholar
  6. (1).
    Bowman, F., Introduction to Elliptic Functions witt applications, New York, 1953.Google Scholar
  7. (1).
    Coolidge, J. L., “Robert Adrain and the Beginnings of American mathematics, American Mathematical Monthly, Vol. 33 (1926), 61–76.Google Scholar
  8. (1).
    Ellis, R. L., ‘Remarks on an alleged Proof of the “Method of Least Squares,” contained in a late number of the Edinburgh Review’, London Edinburgh and Dublin Philosophical Magazine, Ser. 3, Vol. 57 (1850), 321–328.Google Scholar
  9. (1).
    Gauss, K. F., Theory of the Motion of the Heavenly Bodies ... (Trans. from original edition published in Latin in Hamburg, 1809). Reprinted, New York, 1963.Google Scholar
  10. (1).
    Gibson, Robert, The Theory and Practice of Surveying, New York, 1828.Google Scholar
  11. (1).
    Glaisher, J. W. L., “On the Law of Facility of Errors of Observations, and on the Method of Least Squares,” Memoirs of the Royal Astronomical Society, Vol. 39 (1872), 75–124.Google Scholar
  12. (1).
    Hammer, E., „Beitrag zur Geschichte der Ausgleichungsrechnung“, Zeitschrift für Vermessungswesen, Bd. XXIX (1900), 613–628.Google Scholar
  13. (1).
    Harter, H. L., “The method of least squares and some alternatives — Part I”, International Statistical Review, Vol. 42 (1974), 147–174.Google Scholar
  14. (1).
    Herschel, J. F. W., Review of Quetelet's “Lettres á S.A.R. le Duc regnant de Saxe Cobourg et Gotha”, Edinburgh Review, Vol. 83 (1850), 1–57.Google Scholar
  15. (1).
    Hogan, E. R., “Robert Adrain: American mathematician”, Historia Mathematica, Vol. 4 (1977), 157–172.Google Scholar
  16. (1).
    Knobloch, E., „Zur Grundlagenproblematik der Fehlertheorie“, Festschrift für Helmut Gericke, Ed. by M. Folkerts, & U. Lindgren, Wiesbaden, 1985, 561–590.Google Scholar
  17. (1).
    Laplace, P. S., Traité de mécanique céleste, 5 vols. Paris, 1799–1825. Vols. I–IV transl. by N. Bowditch. Repr., New York, 1966–1969.Google Scholar
  18. (1).
    Legendre, A. M., Nouvelles méthodes pour la détermination des orbites des comètes. Paris, 1805. An abridged translation into English of the Appendix on least squares was published in D. E. Smith, A Source Book of Mathematics, repr., in 2 vols., New York, NY, 1959.Google Scholar
  19. (1).
    Merriman, M., “A list of writings relating to the method of least squares ...”, Trans. of the Connecticut Academy of Arts and Sciences, Vol. 4 (1877), 151–232. Repr. in Stigler [1; Vol. I].Google Scholar
  20. (1).
    Plackett, R. L., “The discovery of the method of least squares,” ... Biometrika, Vol. 59 (1972), 239–251.Google Scholar
  21. (1).
    Poincaré, H., Calcul des Probabilités, Paris, 1912.Google Scholar
  22. (1).
    Spiess, W., „Kann man für Daniel Huber ... Ansprüche als Erfinder, der „Methode der Kleinsten Quadrate geltend machen?“ Schweizerische Zeitschrift für Vermessungswesen und Kulturtechnik, 37, Jahrgang (1939), 11–17 u. 21–23.Google Scholar
  23. (1).
    Stigler, S. M., American Contributions to Mathematical Statistics in the Nineteenth Century, 2 vols., New York, 1980.Google Scholar
  24. (2).
    Stigler, S. M., “Gauss and the invention of least squares,” Annals of Mathematical Statistics, Vol. 9 (1981), 465–474.Google Scholar
  25. (3).
    Stigler, S. M., The History of Statistics. The Measurement of Uncertainty before 1900, Cambridge, Mass., 1986.Google Scholar
  26. (1).
    Struik, D. J., “Adrain, Robert”, Dictionary of Scientific Biography, New York, 1970, Vol. 1, 65–66.Google Scholar
  27. (1).
    Wright, T. W., A Treatise on the Adjustment of Observations ..., New York, 1884.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Jacques Dutka
    • 1
  1. 1.Audits and Surveys, Inc.New York

Personalised recommendations