Archive for History of Exact Sciences

, Volume 41, Issue 2, pp 157–161 | Cite as

Sophie Germain and the theory of numbers

  • J. H. Sampson
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. T. Bell, Men of Mathematics, Simon and Schuster, New York, 1937.Google Scholar
  2. Z. I. Borevich & I. R. Shafarevich, Number Theory, Academic Press, New York, 1966.Google Scholar
  3. Louis L. Bucciarelli & Nancy Dworsky, Sophie Germain, D. Reidel Publ. Co., Dordrecht, 1980.Google Scholar
  4. H. M. Edwards, Fermat's Last Theorem, Springer-Verlag, New York, 1977.Google Scholar
  5. G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörper. Inv. Math. 73 (1983), 349–366.Google Scholar
  6. Charles Henry, Sur divers points de la théorie des nombres. Remarques historiques. Association Française pour l'Avancement des Sciences, Comptes Rendus (1880), 201–207.Google Scholar
  7. K. Ireland & M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, New York, 1982.Google Scholar
  8. Sophie Germain, Oeuvres Philosophiques Suivies de Pensées et de Lettres Inédites, edited and with commentary by Hte. Stupuy, Paris, 1879.Google Scholar
  9. Ernst Eduard Kummer, Collected Papers, edited by André Weil, Springer-Verlag, New York, 1975Google Scholar
  10. Adrien-Marie Legendre, Théorie des Nombres, deuxième édition, Paris, 1827.Google Scholar
  11. L. J. Mordell, On the rational solutions of the indeterminate equation of the third and fourth degrees, Proc. Cambridge Phil. Soc. 21 (1922), p. 179.Google Scholar
  12. L. J. Mordell, Three Lectures on Fermat's Last Theorem, Cambridge University Press, 1920. Reprinted in Famous Problems and Other Monographs, Chelsea, New York, 1962.Google Scholar
  13. C. Runge, Über ganzzahlige Lösungen von Gleichungen zwischen zwei Veränderlichen. Crelle's Journal 100 (1887), 425–435.Google Scholar
  14. J. L. Selfridge, C. A. Nicol, & H. S. Vandiver, Proof of Fermat's last theorem for all prime exponents less than 4002, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 970–973.Google Scholar
  15. C. L. Siegel, Zu zwei Bemerkungen Kummers, Ges. Abh., Band III, Springer-Verlag Berlin, 1966. Pages 436–442.Google Scholar
  16. L. Szpiro, La conjecture de Mordell [d'après G. Faltings], Séminaire Bourbaki, 36e année, 1983/84, No. 619.Google Scholar
  17. A. Weil, Number-theory and algebraic geometry, Proc. Int. Congress of Mathematicians, 1950, pp. 90–100.Google Scholar
  18. A. Weil, Essais Historiques sur la Théorie des Nombres, Monographie No. 22 de L'Enseignement Mathématique, Genève, 1975.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • J. H. Sampson
    • 1
  1. 1.The Johns Hopkins UniversityUSA

Personalised recommendations