Advertisement

Archives of Microbiology

, Volume 122, Issue 3, pp 275–280 | Cite as

Temperature response of trehalase from a mesophilic (Neurospora crassa) and a thermophilic (Thermomyces lanuginosus) fungus

  • A. R. S. Prasad
  • Ramesh Maheshwari
Article

Abstract

The purified trehalases of the mesophilic fungus, Neurospora crassa, and the thermophilic fungus, Thermomyces lanuginosus, had similar temperature and pH optima for activity, but differed in molecular weight, electrophoretic mobility and Michaelis constant. At lower concentration, trehalases from both fungi were inactivated to similar extent at 60°C. While purified trehalase of T. lanuginosus was afforded protection against heat-inactivation by proteinaceous protective factor(s) present in mycelial extracts, by bovine serum albumin and by casein, these did not afford protection to N. crassa trehalase against heat inactivation. Both trehalases exhibited discontinuous Arrhenius plots with temperature of discontinuity at 40°C. The activation energy calculated from the slope of the Arrhenius plot was higher for the T. lanuginosus enzyme. The plots of apparent Km versus 1/T for trehalases of N. crassa and T. lanuginosus were linear from 30° to 60°C.

The results show that purified trehalases of the mesophilic and the thermophilic fungus are distinct. Although, these exhibit similar thermostability of their catalytic function at low concentration, distinctive thermal stability characteristics of thermophilic enzyme become apparent at high protein concentration. This could be brought about in the cell by the enzyme itself, or by other proteins.

Key words

Neurospora crassa Thermomyces lanuginosus Humicola lanuginosa Mesophilic fungus Thermophilic fungus Trehalase Heat inactivation Temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avigad, G., Ziv, O., Neufeld, H.: Intracellular trehalase of a hybrid yeast. Biochem. J. 97, 715–722 (1965)Google Scholar
  2. Brock, T. D.: Life at high temperatures. Science 158, 1012–1019 (1967)Google Scholar
  3. Ceccarini, C.: Trehalase from Dictyostelium discoideum: Purification and properties. Science 151, 454–456 (1966)Google Scholar
  4. Chell, R. M., Sundaram, T. K., Wilkinson, A. E.: Isolation and characterization of isocitrate lyase from a thermophilic Bacillus sp. Biochem. J. 173, 165–177 (1978)Google Scholar
  5. Cleland, W. W.: The statistical analysis of enzyme kinetic data. Advances in Enzymology 29, 1–32 (1967)Google Scholar
  6. Crisan, E. V.: Current concepts of thermophilism and thermophilic fungi. Mycologia 65, 1171–1198 (1973)Google Scholar
  7. Davis, B. J.: Disc electrophoresis. II. Method and application to human serum proteins. Ann. N.Y. Acad. Sci. 121, 404–427 (1964)Google Scholar
  8. Davis, R. H., de Serres, F. J.: Genetic and microbiological techniques for Neurospora crassa. Methods in Enzymology 17, 79–143 (1970)Google Scholar
  9. Dixon, M., Webb, E. C.: Enzymes, 2nd ed., pp. 145–166. New York: Academic Press 1964Google Scholar
  10. Donovan, J. W., Beardslee, R. A.: Heat stabilization produced by protein-protein association. Denaturation of trypsin-inhibitor complexes. (Abstr.). Fed. Proc. 33, 1504 (1974)Google Scholar
  11. Eilers, F. I., Allen, J., Hill, E. P., Sussman, A. S.: Localization of disaccharidases in extracts of Neurospora after electrophoresis in polyacrylamide gels. J. Histochem. Cytochem. 12, 448–450 (1964)Google Scholar
  12. Friedman, S.: Trehalase from insects. Methods in Enzymology 8, 600–603 (1966)Google Scholar
  13. Griffiths, M. W., Sundaram, T. K.: Isocitrate lyase from a thermophilic Bacillus: Effect of salts on enzyme activity. J. Bacteriol. 116, 1160–1169 (1973)Google Scholar
  14. Glymph, J. L., Stutzenberger, F. J.: Production, purification and characterization of α-amylase from Thermomonospora curvata. Appl. and Env. Microbiol. 34, 391–397 (1977)Google Scholar
  15. Han, M. H.: Non-linear Arrhenius plots in temperature-dependent kinetic studies of enzyme reactions. I. Single transition process. J. Theoret. Biol. 35, 543–568 (1972)Google Scholar
  16. Hecker, L. I., Sussman, A. S.: Activity and heat stability of trehalase from the mycelium and ascospores of Neurospora. J. Bacteriol. 115, 582–591 (1973)Google Scholar
  17. Hill, E. P., Sussman, A. S.: Purification and properties of trehalase(s) from Neurospora. Arch. Biochem. Biophys. 102, 389–396 (1963)Google Scholar
  18. Horikoshi, K., Ikeda, Y.: Trehalase in conidia of Aspergillus oryzae. J. Bacteriol. 91, 1883–1887 (1966)Google Scholar
  19. Jamaluddin, M. P.: Purification and properties of homoprotocatechuate 2,3-dioxygenase from Bacillus stearothermophilus. J. Bacteriol. 29, 690–697 (1977)Google Scholar
  20. Lindsay, J. A., Creaser, E. H.: Purification and properties of histidinol dehydrogenases from psychrophilic, mesophilic and thermophilic bacilli. Biochem. J. 165, 247–253 (1977)Google Scholar
  21. Ljungdahl, L. G., Sherod, G.: Proteins from thermophilic microorganisms. In: Extreme environments, mechanisms of microbial adaptation (M. R. Heinrich, ed.), pp. 147–187. New York, San Francisco, London: Academic Press 1976Google Scholar
  22. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)Google Scholar
  23. Malcolm, A. A., Shepherd, M. G.: Purification and properties of Penicillium glucose-6-phosphate dehydrogenase. Biochem. J. 128, 817–831 (1972)Google Scholar
  24. McInnis, T., Domnas, A.: The properties of trehalase from the mosquito-parasitizing water mold, Lagenidium sp. J. Invert. Pathol. 22, 313–320 (1973)Google Scholar
  25. Miller, H. M., Shepherd, M. G.: Purification and properties of 6-phosphogluconate dehydrogenase from Penicillium duponti and Penicillium notatum. Can. J. Microbiol. 18, 1289–1298 (1972)Google Scholar
  26. Panek, A., Souza, N. O.: Purification and properties of baker's yeast trehalase. J. Biol. Chem. 239, 1671–1673 (1964)Google Scholar
  27. Prasad, A. R. S., Maheshwari, R.: Purification and properties of trehalase from the thermophilic fungus Humicola lanuginosa. Biochem. Biophys. Acta 525, 162–170 (1978a)Google Scholar
  28. Prasad, A. R. S., Maheshwari, R.: Growth of and trehalase activity in the thermophilic fungus Thermomyces lanuginosus. Proc. Indian Acad. Sci. 87B, 231–341 (1978b)Google Scholar
  29. Samson, R. A., Tansey, M. R.: Guide to thermophilic and thermotolerant fungi. (Abstr.). 2nd International Mycological Congress, Tampa, Florida, U.S.A. (1977)Google Scholar
  30. Sando, G. N., Hogenkamp, H. P. C.: Ribonucleotide reductase from Thermus X-1, a thermophilic organism. Biochemistry 12, 3316–3322 (1973)Google Scholar
  31. Singleton, R. Jr., Amelunxen, R. E.: Proteins from thermophilic microorganisms. Bact. Rev. 37, 320–342 (1973)Google Scholar
  32. Singleton, R. Jr., Middaugh, C. R., MacElroy, R. D.: Comparison of proteins from thermophilic and nonthermophilic sources in terms of structural parameters inferred from amino acid composition. Int. J. Peptide Protein Res. 10, 39–50 (1977)Google Scholar
  33. Stellwagen, E., Cronlund, M. M., Barnes, L. D.: A thermostable enolase from the extreme thermophile Thermus aquaticus YT-1. Biochemistry 12, 1552–1559 (1973)Google Scholar
  34. Suzuki, K., Imahori, K.: Glyceraldehyde-3-phosphate dehydrogenase of Bacillus stearothermophillus. J. Biochem. 74, 955–970 (1973)Google Scholar
  35. Veronese, F. M., Boccu, E., Fontana, A., Benassi, C. A., Scoffone, E.: Isolation and some properties of 6-phosphogluconate dehydrogenase from Bacillus stearothermophilus. Biochem. Biophys. Acta 334, 31–44 (1974)Google Scholar
  36. Zuber, H. (ed.): Enzymes and proteins from thermophilic microorganisms. Basel, Stuttgart: Birkhauser Verlag, 1976Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • A. R. S. Prasad
    • 1
  • Ramesh Maheshwari
    • 1
  1. 1.Department of BiochemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations