Journal of Biomolecular NMR

, Volume 8, Issue 3, pp 273–284 | Cite as

Anisotropic rotational diffusion of perdeuterated HIV protease from 15N NMR relaxation measurements at two magnetic fields

  • Nico Tjandra
  • Paul Wingfield
  • Stephen Stahl
  • Ad Bax
Research Paper


15N NMR relaxation times in perdeuterated HIV-1 protease, complexed with the sub-nanomolar inhibitor DMP323, have been measured at 600 and 360 MHz 1H frequency. The relative magnitudes of the principal components of the inertia tensor, calculated from the X-ray coordinates of the protein-drug complex, are 1.0:0.85:0.44. The relation between the T1/T2 ratios observed for the individual backbone amides and their N-H orientation within the 3D structure of the protease dimer yields a rotational diffusion tensor oriented nearly collinear to the inertia tensor. The relative magnitudes of its principal components (1.00:1.11:1.42) are also in good agreement with hydrodynamic modeling results. The orientation and magnitude of the diffusion tensors derived from relaxation data obtained at 360 and 600 MHz are nearly identical. The anisotropic nature of the rotational diffusion has little influence on the order parameters derived from the 15N T1 and T2 relaxation times; however, if anisotropy is ignored, this can result in erroneous identification of either exchange broadening or internal motions on a nanosecond time scale. The average ratio of the T1 values measured at 360 and 600 MHz is 0.50±0.015, which is slightly larger than the value of 0.466 expected for an isotropic rigid rotor with τc = 10.7 ns. The average ratio of the T2 values measured at 360 and 600 MHz is 1.14±0.04, which is also slightly larger than the expected ratio of 1.11. This magnetic field dependence of the T1 and T2 relaxation times suggests that the spectral density contribution from fast internal motions is not negligible, and that the chemical shift anisotropy of peptide backbone amides, on average, is larger than the 160 ppm value commonly used in 15N relaxation studies of proteins.


15N NMR Rotational diffusion Chemical shift anisotropy Dynamics Magnetic field dependence Deuteration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10858_2004_BF00410326_MOESM1_ESM.pdf (538 kb)
Supplementary Tables (PDF 538 KB)


  1. Allerhand, A., Doddrell, D., Glushko, V., Cochran, D.W., Wenkert, E., Lawson, P.J. and Gurd, F.N.R. (1971) J. Am. Chem. Soc., 93, 544–546.CrossRefGoogle Scholar
  2. Barbato, G., Ikura, M., Kay, L.E., Pastor, R.W. and Bax, A. (1992) Biochemistry, 31, 5269–5278.CrossRefGoogle Scholar
  3. Bevington, P.R. and Robinson, D.K. (1992) Data Reduction and Error Analysis for the Physical Sciences, 2nd ed., McGraw-Hill, New York, NY, U.S.A., pp. 205–209.Google Scholar
  4. Boyd, J., Hommel, U. and Campbell, I.D. (1990) Chem. Phys. Lett., 175, 477–482.CrossRefADSGoogle Scholar
  5. Brüschweiler, R., Liao, X. and Wright, P.E. (1995) Science, 268, 886–889.CrossRefADSGoogle Scholar
  6. Clore, G.M., Driscoll, P.C., Wingfield, P.T. and Gronenborn, A.M. (1990a) Biochemistry, 29, 7387–7401.CrossRefGoogle Scholar
  7. Clore, G.M., Szabo, A., Bax, A., Kay, L.E., Driscoll, P.C. and Gronenborn, A.M. (1990b) J. Am. Chem. Soc., 112, 4989–4991.CrossRefGoogle Scholar
  8. Cole, H.B.R. and Torchia, D.A. (1991) Chem. Phys., 158, 271–281.CrossRefGoogle Scholar
  9. Davis, D.G., Perlman, M.E. and London, R.E. (1994) J. Magn. Reson., B104, 266–275.CrossRefGoogle Scholar
  10. Dellwo, M.J. and Wand, A.J. (1989) J. Am. Chem. Soc., 111, 4571–4578.CrossRefGoogle Scholar
  11. Garcia de la Torre, J. and Bloomfield, V.A. (1981) Q. Rev. Biophys., 14, 81–139.CrossRefGoogle Scholar
  12. Grzesiek, S. and Bax, A. (1993) J. Am. Chem. Soc., 115, 12593–12594.CrossRefGoogle Scholar
  13. Hansen, A.P., Petros, A.M., Meadows, R.P. and Fesik, S.W. (1994) Biochemistry, 33, 15418–15424.CrossRefGoogle Scholar
  14. Hiyama, Y., Niu, C.-H., Silverton, J.V., Bavoso, A. and Torchia, D.A. (1988) J. Am. Chem. Soc., 101, 2378–2383.CrossRefGoogle Scholar
  15. Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28, 8972–8979.CrossRefGoogle Scholar
  16. Kay, L.E., Nicholson, L.K., Delaglio, F., Bax, A. and Torchia, D.A. (1992) J. Magn. Reson., 97, 359–375.Google Scholar
  17. King, R., Maas, R., Gassner, M., Nanda, R.K., Conover, W. and Jardetzky, O. (1978) Biophys. J., 6, 103–117.CrossRefGoogle Scholar
  18. Kördel, J., Skelton, N.J., Akke, M., PalmerIII, A.G. and Chazin, W.J. (1992) Biochemistry, 31, 4856–4866.CrossRefGoogle Scholar
  19. Lam, P.Y.S., Jadhav, P.K., Eyerman, C.J., Hodge, C.N., Ru, Y., Bacheler, L.T., Meek, J.L., Otto, M.J., Rayner, M.M., Wong, Y.N., Chang, C.-H., Weber, P.C., Jackson, D.A., Sharpe, T.R. and Erickson-Viitanen, S. (1994) Science, 263, 380–384.CrossRefADSGoogle Scholar
  20. Lipari, G. and Szabo., A. (1982a) J. Am. Chem. Soc., 104, 4546–4558.CrossRefGoogle Scholar
  21. Lipari, G. and Szabo., A. (1982b) J. Am. Chem. Soc., 104, 4559–4570.CrossRefGoogle Scholar
  22. London, R.E. (1980) In Magnetic Resonance in Biology (Ed., Cohen, J.S.), Wiley, New York, NY, U.S.A., pp. 1–69.Google Scholar
  23. Nicholson, L.K., Yamazaki, T., Torchia, D.A., Grzesiek, S., Bax, A., Stahl, S.J., Kaufman, J.D., Wingfield, P.T., Lam, P.Y.S., Jadhav, P.K., Hodge, C.N., Domaille, P.J. and Chang, C.-H. (1995) Nature Struct. Biol., 2, 274–280.CrossRefGoogle Scholar
  24. Nirmala, N.R. and Wagner, G. (1988) J. Am. Chem. Soc., 110, 7557–7558.CrossRefGoogle Scholar
  25. Oas, T.G., Hartzell, C.J., Dahlquist, F.W. and Drobny, G.P. (1987) J. Am. Chem. Soc., 109, 5962–5966.CrossRefGoogle Scholar
  26. PalmerIII, A.G. (1993) Curr. Opin. Biotechnol., 4, 385–391.CrossRefMathSciNetGoogle Scholar
  27. Peng, J.W., Thanabal, V. and Wagner, G. (1991) J. Magn. Reson., 95, 421–427.Google Scholar
  28. Peng, J.W. and Wagner, G. (1992) Biochemistry, 31, 8571–8586.CrossRefGoogle Scholar
  29. Peng, J.W. and Wagner, G. (1995) Biochemistry, 34, 16733–16752.CrossRefGoogle Scholar
  30. Phan, I., Boyd, J. and Campbell, I.D. (1996) J. Biomol. NMR, in press.Google Scholar
  31. Schneider, D.M., Dellwo, M. and Wand, A.J. (1992) Biochemistry, 31, 3645–3652.CrossRefGoogle Scholar
  32. Schurr, J.M., Babcock, H.P. and Fujimoto, B.S. (1994) J. Magn. Reson., B105, 211–224.CrossRefGoogle Scholar
  33. Torchia, D.A., Nicholson, L.K., Cole, H.B.R. and Kay, L.E. (1993) In NMR of Proteins (Eds., Clore, G.M. and Gronenborn, A.M.), MacMillan, London, U.K., pp. 190–219.Google Scholar
  34. Tjandra, N., Kuboniwa, H., Ren, H. and Bax, A. (1995a) Eur. J. Biochem., 230, 1014–1024.CrossRefGoogle Scholar
  35. Tjandra, N., Feller, S.E., Pastor, R.W. and Bax, A. (1995b) J. Am. Chem. Soc., 117, 12562–12566.CrossRefGoogle Scholar
  36. Tjandra, N., Grzesiek, S. and Bax, A. (1996a) J. Am. Chem. Soc., in press.Google Scholar
  37. Tjandra, N., Szabo, A. and Bax, A. (1996b), J. Am. Chem. Soc., in press.Google Scholar
  38. Wagner, G. (1993) Curr. Opin. Struct. Biol., 3, 748–754.CrossRefGoogle Scholar
  39. Woessner, D.E. (1962) J. Chem. Phys., 3, 647–654.CrossRefADSGoogle Scholar
  40. Wüthrich, K. and Wagner, G. (1978) Trends Biochem. Sci., 3, 227–230.CrossRefGoogle Scholar

Copyright information

© ESCOM Science Publishers B.V. 1996

Authors and Affiliations

  • Nico Tjandra
    • 1
  • Paul Wingfield
    • 2
  • Stephen Stahl
    • 2
  • Ad Bax
    • 1
  1. 1.Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA
  2. 2.Protein Expression Laboratory, National Institute of Arthritis and Muscoskeletal and Skin DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations