Advertisement

Pflügers Archiv

, Volume 431, Issue 2, pp 196–203 | Cite as

Swelling-induced catecholamine secretion recorded from single chromaffin cells

  • Tobias Moser
  • Robert H. Chow
  • Erwin Neher
Original Article Mollecular and Cellular Physiology

Abstract

We have studied osmotically induced catecholamine secretion from bovine adrenal chromaffin cells by combining patch-clamp measurements, electrochemical detection of secretion, and Fura-2 measurements of intracellular free calcium concentration ([Ca2+]i). We find that osmotically induced catecholamine release is exocytotic and calcium dependent. Furthermore, we demonstrate that cell swelling is coupled to such secretion via a volume-activated current, carrying predominantly chloride, which causes a plateau depolarization of the cell membrane potential and thus promotes voltage-activated calcium influx. Therefore, cell volume changes may modulate the secretory activity.

Key words

Cell swelling Exocytosis Chromaffin cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artalejo AR, Garcia AG, Neher E (1993) Small-conductance Ca2+-activated K+ channels in bovine chromaffin cells. Pflügers Arch 423:97–103Google Scholar
  2. 2.
    Barasch J, Gershon MD, Nunez EA, Tamir H, Al-Awqati Q (1988) Thyrotropin induces the acidification of the secretory granules of parafollicular cells by increasing the chloride conductance of the granular membrane. J Cell Biol 107:2137–2147Google Scholar
  3. 3.
    Blackard WG, Kikuchi M, Rabinovitch A, Renold AE (1975) An effect of hypoosmolarity on insulin release. Am J Physiol 228:706–713Google Scholar
  4. 4.
    Breckenrigde LJ, Almers W (1987) Final steps in exocytosis observed in a cell with giant secretory granules. Proc Natl Acad Sci USA 84:1945–1949Google Scholar
  5. 5.
    Britsch S, Krippeit-Drews P, Gregor M, Lang F, Drews G (1994) Effects of osmotic changes in extracellular solutions on electrical activity of mouse pancreatic B-cells. Biochem Biophys Res Commun 204:641–664Google Scholar
  6. 6.
    Chow RH, von Rüden L, Neher E (1992) Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 356:60–63Google Scholar
  7. 7.
    Cornet M, Ubl J, Kolb HA (1993) Cytoskeleton and ion movements during volume regulation in cultured PC12 cells. J Membr Biol 133:161–170Google Scholar
  8. 8.
    De Lisle RC, Hopfer U (1986) Electrolyte permeabilities of pancreatic zymogen granules: implications for pancreatic secretion. Am J Physiol 250:G489-G496Google Scholar
  9. 9.
    Doroshenko PA (1989) g-Aminobutyric acid elevates cytosolic calcium in bovine chromaffin cells. Neurosci Lett 104:83–87Google Scholar
  10. 10.
    Doroshenko PA, Neher E (1992) Volume-sensitive chloride conductance in bovine chromaffin cell membrane. J Physiol (Lond) 449:197–218Google Scholar
  11. 11.
    Doroshenko PA, Penner R, Neher E (1991) Novel chloride conductance in the membrane of bovine chromaffin cells activated by intracellular GTPγS. J Physiol (Lond) 436:711–724Google Scholar
  12. 12.
    Fenwick M, Marty A, Neher E (1982) Sodium and calcium channels in bovine chromaffin cells. J Physiol (Lond) 331:599–635Google Scholar
  13. 13.
    Finkelstein A, Zimmerberg J, Cohen FS (1986) Osmotic swelling of vesicles: its role in the fusion of vesicles with planar phospholipid bilayer membranes and its possible contribution role in exocytosis. Annu Rev Physiol 48:163–174Google Scholar
  14. 14.
    Fuller CM, Deetjen HH, Piiper A, Schultz I (1989) Secretagogue and second messenger-activated chloride permeabilities in isolated pancreatic zymogen granules. Pflügers Arch 415:29–36Google Scholar
  15. 15.
    Greer MA, Greer SE, Opsahl Z, McCafferty L, Maruta S (1983) Hypoosmolar stimulation of in vitro pituitary secretion of luteinizing hormone: a potential clue to the secretory process. Endocrinology 113:1531–1533Google Scholar
  16. 16.
    Hamill OP, Marty A, Neher E, Sakmann B, Sigworth F (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100Google Scholar
  17. 17.
    Hampton RY, Holz RW (1988) Effects of changes in osmolality on the stability and function of cultured chromaffin cells and the possible role for osmotic forces in exocytosis. J Cell Biol 96:1082–1088Google Scholar
  18. 18.
    Häussinger D, Lang F, Gerok W (1994) Regulation of cell function by the intracellular hydration state. Am J Physiol 267:E343-E355Google Scholar
  19. 19.
    Heinemann C, von Rüden L, Chow RH, Neher E (1993) A twostep model of secretion control in neuroendocrine cells. Pflügers Arch 424:105–112Google Scholar
  20. 20.
    Holz RW (1986) The role of osmotic forces in exocytosis from adrenal chromaffin cells. Annu Rev Physiol 48:175–189Google Scholar
  21. 21.
    Holz RW, Senter RA (1986) The effect of osmolality and ionic strength on secretion from adrenal chromaffin cells permeabilized with digitonin. J Neurochem 46:1835–1842Google Scholar
  22. 22.
    Jankowski JA, Schroeder TJ, Hollz RW, Wightman RM (1992) Quantal secretion of catecholamines measured from individual bovine adrenal medullary cells permeabilized with digitonin. J Biol Chem 267:18329–18335Google Scholar
  23. 23.
    Kuijpers GAJ, Rosario LM, Ornberg RL (1989) Role of intracellular pH in secretion from adrenal medulla chromaffin cells. J Biol Chem 264:698–705Google Scholar
  24. 24.
    Lang F, Busch GL, Völkl H, Häussinger D (1995) Cell volume: a second message in regulation of cellular function. News Physiol Sci 10:18–22Google Scholar
  25. 25.
    Leung S, O'Donnell ME, Martinez A, Palfrey HC (1994) Regulation by nerve growth factor and protein phosphorylation of Na/K/2Cl cotransport and cell volume in PC12 cells. J Biol Chem 269:10581–10589Google Scholar
  26. 26.
    Lund PE, Berts A, Hellmann B (1992) Stimulation of insulin release by isomolar addition of permeant molecules. Mol Cell Biochem 109:77–81Google Scholar
  27. 27.
    Marty A, Neher E (1985) Potassium channels in cultured bovine adrenal chromaffin cells. J Physiol (Lond) 367:117–141Google Scholar
  28. 28.
    Mochizuki-Oda N, Negishi M, Mori K, Ito S (1993) Arachidonic acid activates cation channels in bovine adrenal chromaffin cells. J Neurochem 61:1882–1890Google Scholar
  29. 29.
    Oike M, Droogmans G, Nilius B (1994) Mechanosensitive Ca2+ transients in endothelial cells from human umbilical vein. Proc Natl Acad Sci USA 91:2940–2944Google Scholar
  30. 30.
    Ornberg RL, Furuya S, Goping G, Kuijpers GAJ (1995) Granule swelling in stimulated bovine adrenal chromaffin cells: regulation by the intracellular pH. Cell Tissue Res 279:85–92Google Scholar
  31. 31.
    von Rüden L, Neher E (1993) A calcium-dependent early step in the release of catecholamines from adrenal chromaffin cells. Science 262:1061–1065Google Scholar
  32. 32.
    Sato N, Murakami M, Wang X, Greer ME (1991) The contrasting role of calcium influx in secretion induced by cell swelling can differentiate normal and tumor-derived rat pituitary cells. Endocrinology 129:2541–2546Google Scholar
  33. 33.
    Wakade AR, Malhorta RK, Sharna TR, Wakade TD (1986) Changes in tonicity of perfusion medium cause prolonged opening of calcium channels of the rat chromaffin cells to evoke explosive secretion of catecholamines. J Neurochem 6:2625–2634Google Scholar
  34. 34.
    Wang X, Sato N, Greer SE, McAdams S (1989) Cell swelling induced by the permeant molecules urea and glycerol induces immediate high amplitude thyrotropin and prolactin secretion by perifused adenohypophyseal cells. Biochem Biophys Res Commun 163:471–475Google Scholar
  35. 35.
    Wightman RM, Jankowski JA, Kennedy RT, Kawagoe KT, Schroeder TJ, Leszczyozyn DJ, Near JA, Diliberto EJ Jr, Viveros OH (1991) Proc Natl Acad Sci USA 88:10754–10758Google Scholar
  36. 36.
    Zhou J, Neher E (1993) Mobile and immobile calcium buffers in bovine adrenal chromaffin cells. J Physiol (Lond) 469:245–273Google Scholar
  37. 37.
    Zimmerberg J, Curran M, Cohen FS, Brodwick M (1987) Simultaneous electrical and optical measurements show that membrane fudion precedes secretory granule swelling during exocytosis of beige mouse mast cells. Proc Natl Acad Sci USA 84:1585–1589Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Tobias Moser
    • 1
  • Robert H. Chow
    • 2
  • Erwin Neher
    • 1
  1. 1.Abteilung MembranbiophysikMax-Planck-Institut für Biophysikalische ChemieAm FaßbergGermany
  2. 2.Abteilung Molekulare Biologie Neuronaler SignaleMax-Planck-Institut für Experimentelle MedizinGöttingenGermany

Personalised recommendations