Advertisement

Archiv für Mikrobiologie

, Volume 71, Issue 3, pp 283–294 | Cite as

The isolation of mutants not accumulating poly-β-hydroxybutyric acid

  • H. G. Schlegel
  • R. Lafferty
  • I. Krauss
Article

Summary

Five mutant strains of Hydrogenomonas H 16 which synthesize poly-β-hydroxybutyric acid either slowly or not at all have been isolated following nitrite and NMG treatment of wild type cells. When grown on a nitrogen deficient agar medium, the colonies of PHB-free cells can be recognized by their diminished retention of the dye sudanblack B. Enrichment procedures for such mutants have been devised employing the 32P-phosphate inactivation technique and sucrose gradient centrifugation. The mutants have been characterized with respect to their growth properties, respiratory control and other properties.

Keywords

Nitrogen Sucrose Centrifugation Agar Nitrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bohlken, G.: Zur Speicherung von Reservestoffen in Bacillus megaterium. II. Untersuchungen an Poly-β-hydroxybuttersäure-freien Mutanten. Zbl. Bakt., 2. Abt. 123, 16–29 (1969).Google Scholar
  2. Chester, V. E., Byrne, M. J.: Selective media for the detection of revertants in cultures of glycogen-deficient mutants. J. Bact. 97, 1504 (1969).Google Scholar
  3. Damotte, M., Cattanéo, J., Sigal, N., Puig, J.: Mutants of Escherichia coli K 12 altered in their ability to store glycogen. Biochem. biophys. Res. Commun. 32, 916–920 (1968).Google Scholar
  4. Dawes, E. A., Ribbons, D. W.: Some aspects of the endogenous metabolism of bacteria. Bact. Rev. 28, 126–149 (1964).Google Scholar
  5. Fuerst, C. R., Stent, G. S.: Inactivation of bacteria by decay of incorporated radioactive phosphorus. J. gen. Physiol. 40, 73–90 (1956).Google Scholar
  6. Halvorson, H. O., Swanson, A.: Role of dipicolinic acid in the physiology of bacterial spores. In: Spores IV, Int. Conf. 1968 Amer. Soc. Microbiol.; Campbell, L. L. (ed.), 1969.Google Scholar
  7. Harold, R. L., Harold, F. M.: Mutants of Aerobacter aerogenes blocked in the accumulation of inorganic polyphosphate. J. gen. Microbiol. 31, 241–246 (1963).Google Scholar
  8. Reh, M., Schlegel, H. G.: Anreicherung und Isolierung auxotropher Mutanten von Hydrogenomonas H 16. Arch. Mikrobiol. 67, 99–109 (1969).Google Scholar
  9. Schlegel, H. G., v. Bartha, R.: „Leerlauf”-H2-Oxydation und „Rückkoppelung” bei Knallgasbakterien. Naturwissenschaften 48, 414–415 (1961).Google Scholar
  10. —, Gottschalk, G.: Poly-β-hydroxybuttersäure, ihre Verbreitung, Funktion und Biosynthese. Angew. Chem. 74, 342–347 (1962).Google Scholar
  11. —— v. Bartha, R.: Formation and utilization of poly-β-hydroxybutyric acid by Knallgas bacteria (Hydrogenomonas). Nature (Lond.) 191, 463–465 (1961).Google Scholar
  12. —, Kaltwasser, H., Gottschalk, G.: Ein Submersverfahren zur Kultur wasserstoff-oxydierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch. Mikrobiol. 38, 209–222 (1961).Google Scholar
  13. Schmidt, K., Jensen, S. Liaaen, Schlegel, H. G.: Die Carotinoide der Thiorhodaceae. I. Okenon als Hauptcarotinoid von Chromatium okenii Perty. Arch. Mikrobiol. 46, 117–126 (1963).Google Scholar
  14. Sobek, J. M., Charba, J. F., Foust, W. N.: Endogenous metabolism of Azotobacter agilis. J. Bact. 92, 687–695 (1966).Google Scholar
  15. Wise, J. A., Swanson, A., Halvorson, H. O.: Dipicolinic acid-less mutants of Bacillus cereus. J. Bact. 94, 2075–2076 (1967).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • H. G. Schlegel
    • 1
    • 2
  • R. Lafferty
    • 1
    • 2
  • I. Krauss
    • 1
    • 2
  1. 1.Institut für Mikrobiologie der Gesellschaft für Strahlenforschung mbH MünchenMunichGermany
  2. 2.Institut für Mikrobiologie der Universität GöttingenGöttingenGermany

Personalised recommendations