Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Terminal oxydation pattern of a soil Pseudomonad (PL-strain)

  • 22 Accesses

  • 2 Citations

Summary

The organism grown on Δ1-p-menthene was found to grow without any lag on methyl isopropyl ketone, isobutyrate, succinate, malate, lactate and acetate. Isobutyrate or acetate grown cells grew on Δ1-p-menthene after a lag and showed comparatively little growth on β-isopropyl pimelic acid.

Δ1-p-menthene grown cells oxidized readily isobutyrate, acetate, succinate, malate, α-ketoglutarate and methacrylate. Methylmalonate, methyl isopropyl ketone and β-isopropyl pimelic acid were rather oxidized at slow rates. Isobutyrate grown cells, on the other hand, showed from very good to very fair oxidation rates with succinate, isobutyrate, acetate, malate, methacrylate, α-ketoglutarate. Methylmalonate was oxidized much better and methyl isopropyl ketone was oxidized slowly.

Δ1-p-menthene and isobutyrate grown cells were used under resting conditions with different substrates in the presence of arsenite. Analysis of the reaction products indicated the accumulation of a keto acid. Qualitative analysis of the keto acid formed by TLC showed pyruvate as the major ketocarboxylic acid with one or two other minor components. The major component had been isolated and identified as pyruvic acid. Similar results had been obtained by working with crude cell-free enzyme preparations.

Based on these results two possible mechanisms of degradation of isobutyrate have been suggested. A plausible pathway has been outlined for the terminal oxidation pattern in the Pseudomonad (PL-strain).

This is a preview of subscription content, log in to check access.

Abbreviations

NAD:

Nicotinamide adenine dinucleotide

FAD:

Flavine adenine dinucleotide

α-KGA:

α-keto-glutaric acid

CFE:

cell-free extract

CoA:

coenzyme A in its reduced state

References

  1. Ballal, N. R., Bhattacharyya, P. K., Rangachari, P. N.: Perillyl alcohol dehydrogenase from a soil Pseudomonad. Biochem. biophys. Res. Commun. 23, 473–478 (1966).

  2. ———: Perillyl aldehyde dehydrogenase from a soil Pseudomonad. Biochem. biophys. Res. Commun. 29, 275–280 (1967).

  3. ———: Microbiological transformations of terpenes: Part XIV. Purification and properties of perillyl alcohol dehydrogenase. Indian. J. Biochem. 5, 1–6 (1968).

  4. Dagley, S., Gibson, D. T.: The bacterial degradation of catechol. Biochem. J. 95, 466–474 (1965).

  5. Den, H., Robinson, W. G., Coon, M. J.: Enzymatic conversion of β-hydroxypropionate to malonic semialdehyde. J. biol. Chem. 234, 1666–1671 (1959).

  6. Dhavalikar, R. S., Bhattacharyya, P. K.: Microbiological transformations of terpenes. Part VIII. Fermentation of limonene by a soil Pseudomonad. Indian J. Biochem. 3, 144–157 (1966).

  7. —, Rangachari, P. N., Bhattacharyya, P. K.: Microbiological transformations of terpenes. Part IX. Pathways of degradation of limonene in a soil Pseudomonad. Indian J. Biochem. 3, 158–164 (1966).

  8. El Hawary, M. F. S., Thompson, R. H. S.: Separation and estimation of blood keto acids by paper chromatography. Biochem. J. 53, 340–347 (1953).

  9. Foster, J. W.: Hydrocarbons as substrates for microorganisms. Antonie v. Leeuwenhoek 28, 242–274 (1962).

  10. Friedemann, T. E., Haugen, G. E.: Pyruvic acid. II. Determination of α-keto acids in blood and urine. J. biol. Chem. 147, 415–442 (1943).

  11. Harris J. O.: Respiration studies of Micrococcus capable of oxidizing hydrocarbons. Arch. Biochem. 70, 457–463 (1957).

  12. Hungund, B. L.: Microbiological transformations of terpenes. Thesis, Poona University, Poona 1968.

  13. Hungund, B. L., Bhattacharyya, P. K., Rangachari, P. N.: Methyl isopropyl ketone from a terpene fermentation by the soil Pseudomonad, PL-strain. Indian J. Biochem. (in press) (1970).

  14. Jagannathan, V., Singh, K., Damodaran, M.: Carbohydrate metabolism in citric acid fermentation. 4. Purification and properties of aldolase from Aspergillus niger. Biochem. J. 63, 94–105 (1956).

  15. Kupiecki F. P., Coon, M. J.: The enzymatic synthesis of β-aminoisobutyrate. A product of valine metabolism, and of β-alanine. A product of β-hydroxy propionate metabolism. J. biol. Chem. 229, 743–754 (1957).

  16. Madhyastha, K. M., Bhattacharyya, P. K.: Microbiological transformations of terpenes. Part XII. Fermentation of p-cymene by a soil pseudomonad (PL-strain). Indian J. Biochem. 5, 102–111 (1968a).

  17. ——: Microbiological transformations of terpenes. Part XIII. Pathways of degradation of p-cymene in a soil Pseudomonad (PL-strain). Indian J. Biochem. 5, 161–167 (1968b).

  18. —, Rangachari, P. N., Raghavendra Rao, M., Bhattacharyya, P. K.: Microbiological transformations of terpenes. Part XV. Enzymic systems in the catabolism of p-cymene in PL-strain. Indian J. Biochem. 5, 167–173 (1968).

  19. McKenna, E. J., Kallio, R. E.: The biology of hydrocarbons. Ann. Rev. Microbiol. 19, 183–208 (1965).

  20. Pujar, B. G.: Microbiological transformations of terpenes. Thesis, Poona University, Poona 1969.

  21. Rabin, R., Reeves, H. C., Wegener, W. S., Megraw, R. E., Ajl, S. J.: Glyoxalate in fatty acid metabolism. Science 150, 1548–1558 (1965).

  22. Reeves, H. C., Ajl, S. J.: α-hydroxyglutaric acid synthetase. J. Bact. 84, 186–187 (1962).

  23. Rendina, G., Coon, M. J.: Enzymatic hydrolysis of the coenzyme A thiol esters of β-hydroxypropionic and β-hydroxy isobutyric acids. J. biol. Chem. 225, 523–534 (1957).

  24. Robinson, W. G., Coon, M. J.: The purification and properties of β-hydroxy isobutyric dehydrogenase. J. biol. Chem. 225, 511–521 (1957).

  25. —, Nagle, R., Bachhawat, B. K., Kupiecki, F. P., Coon, M. J.: Coenzyme A thiol esters of isobutyric, methacrylic, and β-hydroxybutyric acids as intermediates in the enzymatic degradation of valine. J. biol. Chem. 224, 1–11 (1957).

  26. Seubert, W.: Degradation of isoprenoid compounds by microorganisms. I. Isolation and characterization of an isoprenoid degrading bacterium, Pseudomonas citronellolis n.sp. J. Bact. 79, 426–434 (1960).

  27. —, Fass, E.: Untersuchungen über den bakteriellen Abbau von Isoprenoiden. IV. Reinigung und Eigenschaften der β-isohexenyl-glutaconyl-CoA-hydratase und β-hydroxy-β-isohexenylglutaryl-CoA-lyase. Biochem. Z. 341, 23–34 (1964).

  28. ——: Untersuchungen über den bakteriellen Abbau von Isoprenoiden. V. Der Mechanismus des Isoprenoid-Abbaues. Biochem. Z. 341, 35–44 (1964).

  29. ——, Remberger, U.: Untersuchungen über den bakteriellen Abbau von Isoprenoiden. III. Reinigung und Eigenschaften der Geranylcarboxylase. Biochem. Z. 338, 265–275 (1963).

  30. —, Remberger, U.: Unterschungen über den bakteriellen Abbau von Isoprenoiden. II. Die Rolle der Kohlensäure. Biochem. Z. 338, 245–264 (1963).

  31. Shukla, O. P., Bhattacharyya, P. K.: Microbiological transformations of terpenes. XI. Pathways of degradation of α- and β-pinenes in a soil Pseudomonad (PL-strain). Indian J. Biochem. 5, 92–101 (1968).

  32. —, Moholay, M. N., (Miss), Bhattacharyya, P. K.: Microbiological transformations of terpenes. X. Fermentation of α- and β-pinenes by a soil Pseudomonad (PL-strain). Indian J. Biochem. 5, 79–91 (1968).

  33. Smith, J., Kornberg, H. L.: The utilization of propionate by Micrococcus denitrificans. J. gen. Microbiol. 47, 175–180 (1967).

  34. Thijsee, G. J. E., Van Der Linden, A. C.: Oxidation of n-alkanes by a strain of Pseudomonas aeruginosa. Antonie v. Leeuwenhoek 24, 298–308 (1958).

  35. ——: Isoalkane oxidation by a Pseudomonas Part 1. Metabolism of 2-methyl hexane Antonie v. Leeuwenhoek 27, 171–179 (1961).

  36. Umbreit, W. W., Burris, R. H., Stauffer, J. B.: Manometric techniques, 3rd Ed. Minneapolis: Burgess Publishing Co. 1957.

  37. Warburg, O., Christian, W.: Isolierung und Kristallisation des Gärungsferments, Enolase. Biochem. Z. 310, 384–421 (1942).

Download references

Author information

Additional information

Communication number 1426 from the National Chemical Laboratory.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hungund, B.L., Bhattacharyya, P.K. & Rangachari, P.N. Terminal oxydation pattern of a soil Pseudomonad (PL-strain). Archiv. Mikrobiol. 71, 258–270 (1970). https://doi.org/10.1007/BF00410159

Download citation

Keywords

  • Succinate
  • Arsenite
  • Pyruvic Acid
  • Keto Acid
  • Grown Cell