Advertisement

Archives of Microbiology

, Volume 144, Issue 4, pp 367–374 | Cite as

Isolation and characterization of Methanoplanus endosymbiosus sp. nov., an endosymbiont of the marine sapropelic ciliate Metopus contortus quennerstedt

  • J. J. A. van Bruggen
  • K. B. Zwart
  • J. G. F. Hermans
  • E. M. van Hove
  • C. K. Stumm
  • G. D. Vogels
Original Papers

Abstract

Epifluorescence microscopy revealed the presence of a methanogenic bacterium as an endosymbiont in the sapropelic marine ciliate Metopus contortus. The in situ methanogenic activity of the symbiont could be demonstrated. The isolated endosymbiont was an irregular, disc-shaped bacterium with a diameter of 1.6–3.4 μm. It had a generation time of 7 or 12 hours on growth on H2/CO2 or formate, respectively. The temperature range for growth was between 16 and 36°C with an optimum at 32°C. The optimal pH range for growth was 6.8 to 7.3. Salts, with an optimum concentration of 0.25 M, and tungsten were required for growth. The mol% G+C was 38.7%. The cell envelope consisted of proteins and a glycoprotein with an apparent molecular weight of 110,000. Morphology, antigenic relationship and the G+C content established the isolate MC1 as a new species of the genus Methanoplanus, and the name Methanoplanus endosymbiosus is proposed.

Key words

Ciliate culture Endosymbiosis Interspecies hydrogen transfer Hydrogenosome Methanogenic bacteria Methanoplanus endosymbiosus sp. nov. Metopus contortus 

Abbreviations

G+C

Guanine+cytosine

SDS

sodium dodecylsulfate

PIPES

piperazine-N,N′-bis (2-ethane) sulfonic acid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abou Akkada AR, Howard BH (1960) The biochemistry of rumen protozoa. Biochem J 76:445–451Google Scholar
  2. Čerkasov J, Čerkasovova A, Kulda J, Vilhelmova A (1978) Respiration of hydrogenosomes of Tritrichomonas foetus. J Biol Chem 253:1207–1214Google Scholar
  3. Conway de Macario E, Macario AJL, Wolin MJ (1982) Specific antisera and immunological procedures for characterization of methanogenic bacteria. J Bacteriol 149:320–328Google Scholar
  4. Doddema HJ, Vogels GD (1978) Improved identification of methanogenic bacteria by fluorescence microscopy. Appl Environ Microbiol 36:752–754Google Scholar
  5. Dubach AC, Bachofen R (1985) Methanogens: a short taxonomic overview. Experientia 41:441–446Google Scholar
  6. Fenchel T (1968) The ecology of marine microbenthos. II. The food of marine benthic ciliates. Ophelia 5:73–121Google Scholar
  7. Fenchel T, Perry T, Thane A (1977) Anaerobiosis and symbiosis with bacteria in free-living ciliates. J Protozool 24:154–163Google Scholar
  8. Gould-Veley LJ (1905) A further contribution to the study of Pelomyxa palustris Greeff. J Linn Soc 29:374–395Google Scholar
  9. Hutten TJ, De Jong MH, Peeters BPH, Van der Drift C, Vogels GD (1981) Coenzyme M (2-mercaptoethanesulfonic acid)-derivatives and their effects on methane formation from carbon dioxide and methanol by cell-free extracts of Methanosarcina barkeri. J Bacteriol 145:27–34Google Scholar
  10. Kahl A (1928) Die infusorien (Ciliata) der Oldesloer Salzwasserstellen. Arch Hydrobiol 19:189–246Google Scholar
  11. Kahl A (1930–1935) Wimpertiere oder Ciliata (Infusoria). In: Dahl F (ed) Die Tierwelt Deutschlands. Fischer, Jena, part 18, 21, 25 and 30Google Scholar
  12. König H, Stetter KO (1982) Isolation and characterization of Methanolobus tindarius, sp. nov., a coccoid methanogen growing only on methanol and methylamines. Syst Appl Microbiol 3:478–490Google Scholar
  13. Kristjansson JK, Schönheit P, Thauer RK (1982) Different Ks values for hydrogen of methanogenic bacteria and sulfate reducing bacteria: an explanation for the apparent inhibition of methanogenesis by sulfate. Arch Microbiol 131:278–282Google Scholar
  14. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond) 227:680–685Google Scholar
  15. Liebmann H (1937) Bakteriensymbiose bei Faulschlammciliaten. Biol Zbl 57:442–445Google Scholar
  16. Macario AJL, Conway de Macario E (1983) Antigenic fingerprinting of methanogenic bacteria with polyclonal antibody probes. Syst Appl Microbiol 4:451–458Google Scholar
  17. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:2317–2324Google Scholar
  18. Mirault ME, Scherrer K (1971) Isolation of preribosomes from Hela cells and their characterization by electrophoresis on uniform and exponential-gradient-polyacrylamide gels. Eur J Biochem 23:327–386Google Scholar
  19. Müller M (1980) The hydrogenosome. In: Gooday GW, Lloyd D, Trinci APJ (eds) The eukaryotic microbial cell. 30th Symp. Soc Gen Microbiol. Cambridge University Press, Cambridge pp 127–142Google Scholar
  20. Romesser JA, Wolfe RS, Mayer F, Spiess E, Walther-Mauruschat A (1979) Methanogenium, a new genus of marine methanogenic bacteria, and characterization of Methanogenium cariaci sp. nov. and Methanogenium marisnigri sp. nov. Arch Microbiol 121:147–153Google Scholar
  21. Senior E, Lindström EB, Banat IM, Nedwell DB (1982) Sulfate reduction and methanogenesis in the sediment of a saltmarsh on the east coast of the United Kingdom. Appl Environ Microbiol 43:987–996Google Scholar
  22. Trüper HG, Schlegel HG (1964) Sulphur metabolism in Thiorhodaceae, I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek J Microbiol serol 30:225–238Google Scholar
  23. Van Bruggen JJA, Stumm CK, Vogels GD (1983) Symbiosis of methanogenic bacteria and sapropelic protozoa. Arch Microbiol 136:89–95Google Scholar
  24. Van Bruggen JJA, Zwart KB, Van Assema RM, Stumm CK, Vogels GD (1984) Methanobacterium formicicum an endosymbiont of the anaerobic ciliate Metopus striatus McMurrich. Arch Microbiol 139:1–7Google Scholar
  25. Van Bruggen JJA, Stumm CK, Zwart KB, Vogels GD (1985) Endosymbiotic methanogenic bacteria of the sapropelic amoeba Mastigella. FEMS Microbiol Ecol 31:187–192Google Scholar
  26. Wildgruber G, Thomm M, König H, Ober K, Ricchiuto T, Stetter KO (1982) Methanoplanus limicola, a plate-shaped methanogen representing a novel family, the Methanoplanaceae. Arch Microbiol 132:31–36Google Scholar
  27. Wolin EA, Wolin MJ, Wolfe RS (1963) Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886Google Scholar
  28. Yarlett N, Hann AC, Lloyd D (1983) Hydrogenosomes in a mixed isolate of Isotricha prostoma and Isotricha intestinalis from ovine rumen contents. Comp Biochem Physiol 74B:357–364Google Scholar
  29. Yarlett N, Coleman GS, Williams AG, Lloyd D (1984) Hydrogenosomes in known species of rumen entodiniomorphid protozoa. FEMS Microbiol Lett 21:15–19Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • J. J. A. van Bruggen
    • 1
  • K. B. Zwart
    • 1
  • J. G. F. Hermans
    • 1
  • E. M. van Hove
    • 1
  • C. K. Stumm
    • 1
  • G. D. Vogels
    • 1
  1. 1.Department of Microbiology, Faculty of ScienceUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations