Archives of Microbiology

, Volume 144, Issue 4, pp 324–333

Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C

  • Robert Huber
  • Thomas A. Langworthy
  • Helmut König
  • Michael Thomm
  • Carl R. Woese
  • Uwe B. Sleytr
  • Karl O. Stetter
Original Papers

Abstract

A novel type of bacterium has been isolated from various geothermally heated locales on the sea floor. The organisms are strictly anaerobic, rod-shaped, fermentative, extremely thermophilic and grow between 55 and 90°C with an optimum of around 80°C. Cells show a unique sheath-like structure and monotrichous flagellation. By 16S rRNA sequencing they clearly belong to the eubacteria, although no close relationship to any known group could be detected. The majority of their lipids appear to be unique in structure among the eubacteria. Isolate MSB8 is described as Thermotoga maritima, representing the new genus Thermotoga.

Key words

Evolution Eubacteria Thermophile Anaerobe Thermotoga maritima 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albersheim P, Nevins DJ, English PD, Karr A (1967) A method for the analysis of sugars in plant cell-wall polysaccharides by gas liquid chromatography. Carbohyd Res 5:340–345Google Scholar
  2. Balch WE, Wolfe RS (1976) New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791Google Scholar
  3. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: Reevaluation of a unique biological group. Microbiol Rev 43:260–296Google Scholar
  4. Bergmeyer HU (1974) Methoden der enzymatischen Analyse. Verlag Chemie, WeinheimGoogle Scholar
  5. Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer, Berlin Heidelberg New YorkGoogle Scholar
  6. Burgess RR (1976) Purification and properties of E. coli RNA polymerase. In: Losick R, Chamberlin M (eds) RNA Polymerase. Cold Spring Harbor Lab, Cold Spring Harbor, New YorkGoogle Scholar
  7. Eisenberg F (1974) Gaschromatographic assay of iduronic and glucuronic acids as aldonic acid butaneboronates. Anal Biochem 60:181–187Google Scholar
  8. Gottschalk G (1979) Bacterial metabolism. Springer, Berlin Heidelberg New YorkGoogle Scholar
  9. Heinen W, Lauwers AM (1981) Growth of bacteria at 100°C and beyond. Arch Microbiol 129:127–128Google Scholar
  10. Huber H, Thomm M, König H, Thies G, Stetter KO (1982) Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch Microbiol 132:47–50Google Scholar
  11. Humphries P, McConell DJ, Gordon RJ (1973) A procedure for the rapid purification of Escherichia coli deoxyribonucleic acid dependent ribonucleic acid polymerase. Biochem J 133:201–203Google Scholar
  12. Kessel M, Klink F (1982) Identification and comparison of eighteen archaebacteria by means of the diphtheria toxin reaction. Zbl Bakt Hyg Abt I Orig C 3:140–148Google Scholar
  13. Klein RA, Hazlewood GP, Kemp P, Dawson RMC (1979) A new series of long-chain dicarboxylic acids with dimethyl branching found as major components of the lipids of Butyrivibrio spp. Biochem J 183:691–700Google Scholar
  14. König H, Skorko R, Zillig W, Reiter WD (1982) Glycogen in thermoacidophilic archaebacteria of the genera Sulfolobus, Thermoproteus, Desulfurococcus and Thermococcus. Arch Microbiol 132:297–303Google Scholar
  15. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophate T 4. Nature 227:680–685Google Scholar
  16. Langworthy TA (1982) Lipids of Thermoplasma. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 88. Academic Press, New York, pp 396–406Google Scholar
  17. Langworthy TA (1985) Lipids of archaebacteria. In: Woese CR, Wolfe RW (eds) The bacteria, vol VIII. Academic Press Inc, Orlando, pp 459–497Google Scholar
  18. Langworthy TA, Holzner G, Zeikus JG, Tornabene TG (1983) Iso- and anteiso-branched glycerol diethers of the thermophilic anaerobe Thermodesulfotobacterium commune. System Appl Microbiol 4:1–17Google Scholar
  19. Larson DM, Setsinger DC, Waibel PE (1971) Procedure for the determination of d-amino acids. Anal Biochem 39:395–401Google Scholar
  20. Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118Google Scholar
  21. Mirault ME, Scherrer K (1971) Isolation of preribosomes from Hela cells and their characterization by electrophoresis on uniform and exponential-gradient-polyacrylamide gels. Eur J Biochem 23:372–386Google Scholar
  22. Rauen HM (1964) Biochemisches Taschenbuch, 1. Teil. Springer, Berlin Heidelberg GöttingenGoogle Scholar
  23. Rhuland LE, Work E, Denman RF, Hoare DS (1955) The behaviour of the isomers of α, ε-diaminopimelic acid on paper chromatograms. J Am Chem Soc 77:4844–4846Google Scholar
  24. Riva S, Fietta A, Silvestri LG (1972) Mechanism of action of a rifamycin derivative (AF/013) which is active on the nucleic acid polymerases insensitive to rifampicin. Biochem Biophys Res Commun 49:1263–1271Google Scholar
  25. Schaller H, Nüsslein C, Bonhoeffer J, Kurz C, Nietschmann J (1972) Affinity chromatography of DNA-binding enzymes on single-stranded DNA-agarose columns. Eur J Biochem 26:474–481Google Scholar
  26. Schleifer KH, Kandler O (1967) Zur chemischen Zusammensetzung der Zellwand der Streptokokken. I. Die Aminosäuresequenz des Mureins von Streptococcus thermophilus und Streptococcus faecalis. Arch Mikrobiol 57:335–364Google Scholar
  27. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36: 407–477Google Scholar
  28. Sleytr UB, Messner P (1983) Crystalline surface layers on bacteria. Ann Rev Microbiol 37:311–339Google Scholar
  29. Stetter KO (1982) Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105°C. Nature 300:258–260Google Scholar
  30. Stetter KO (1985) Extrem thermophile Bakterien. Naturwissenschaften 72:291–301Google Scholar
  31. Stetter KO, Zillig W (1985) Thermoplasma and the thermophilic sulfur-dependent archaebacteria. In: Wolfe RS, Woese CR (eds) The bacteria, vol VIII. Academic Press, New York, pp 85–170Google Scholar
  32. Stetter KO, Thomm M, Winter J, Wildgruber G, Huber H, Zillig W, Janecovic D, König H, Palm P, Wunderl S (1981) Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring. Zbl Bakt Hyg Abt I Orig C 2:166–178Google Scholar
  33. Stetter KO, König H, Stackebrandt E (1983) Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur-reducing archaebacteria growing optimally at 105°C. Syst Appl Microbiol 4:535–551Google Scholar
  34. Thomm M, Stetter KO (1985) Transcription in methanogens. Evidence for specific in vitro transcription of the purified DNA-dependent RNA polymerase of Methanococcus thermolithotrophicus. Eur J Biochem 149:345–351Google Scholar
  35. Williams WJ (1979) Handbook of anion determination. Butterworths, London, pp 570–572Google Scholar
  36. Zabel HP, König H, Winter J (1985) Emended description of Methanobacterium thermophilicum, Rivard and Smith, and assignment of new isolates to this species. Syst Appl Microbiol 6:72–78Google Scholar
  37. Zillig W, Stetter KO, Wunderl S, Schulz W, Priess H, Scholz I (1980) The Sulfolobus-“Caldariella”-group: Taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125:259–269Google Scholar
  38. Zillig W, Stetter KO, Schäfer W, Janekovic D, Wunderl S, Holz I, Palm P (1981) Thermoproteales: A novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras. Zbl Bakt Hyg Abt I Orig C 2:205–227Google Scholar
  39. Zillig W, Holz I, Janekovic D, Schäfer W, Reiter WD (1983) The archaebacterium Thermococcus celer represents a novel genus within the thermophilic branch of the archaebacteria. Syst Appl Microbiol 4:88–94Google Scholar
  40. Zillig W, Stetter KO, Schnabel R, Thomm M (1985) DNA-dependent RNA polymerases of the archaebacteria. In: Woese CR, Wolfe RS (eds) The Bacteria, vol VIII. Academic Press Inc, Orlando, pp 499–524Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Robert Huber
    • 1
  • Thomas A. Langworthy
    • 2
  • Helmut König
    • 1
  • Michael Thomm
    • 1
  • Carl R. Woese
    • 3
  • Uwe B. Sleytr
    • 4
  • Karl O. Stetter
    • 1
  1. 1.Lehrstuhl für MikrobiologieUniversität RegensburgRegensburgFederal Republic of Germany
  2. 2.University of South DakotaVermillionUSA
  3. 3.University of IllinoisUrbanaUSA
  4. 4.Universität für BodenkulturWienAustria

Personalised recommendations