Archiv für Mikrobiologie

, Volume 69, Issue 2, pp 160–170 | Cite as

The occurrence of a modified Entner-Doudoroff pathway in Clostridium aceticum

  • J. R. Andreesen
  • G. Gottschalk


0761 05
  1. 1.

    The pathway of gluconate fermentation by C. aceticum has been investigated. Gluconate is degraded via 2-keto-3-deoxygluconate (KDG)1 and 2-keto-3-deoxy-6-phosphogluconate (KDPG) which is cleaved to yield pyruvate and glyceraldehyde-3-phosphate.

  2. 2.

    Gluconate dehydrase was present in high activity in cells grown on gluconate, but not in cells grown on fructose. The amounts of KDG kinase and KDPG aldolase in gluconate and fructose grown cells did not differ significantly.

  3. 3.

    The three enzymes involved in gluconate breakdown have been characterized with respect to their requirements for reducing agents and metal ions. Gluconate dehydrase requires a sulfhydryl compound and ferrous ions for activity, KDG kinase a divalent metal ion for activity. Sulfhydryl compounds and metal ions are not necessary for KDPG aldolase activity.

  4. 4.

    When suspensions of washed cells of C. aceticum fermented gluconate, KDG was accumulated in the medium.



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreesen, J. R.: Säurebildung und Kohlenhydratabbau bei neu isolierten Stämmen von Clostridium aceticum. Diss., Göttingen 1969.Google Scholar
  2. Anthony, C., Guest, J. R.: Deferred metabolism of glucose by Clostridium tetanomorphum. J. gen. Microbiol. 54, 277–286 (1968).PubMedGoogle Scholar
  3. Ashwell, G., Wahba, A. J., Hickman, J.: A new pathway of uronic acid metabolism. Biochim. biophys. Acta (Amst.) 30, 186–187 (1958).CrossRefGoogle Scholar
  4. Bard, R. C., Gunsalus, I. C.: Glucose metabolism of Clostridium perfringens: Existence of a metalloaldolase. J. Bact. 59, 387–400 (1950).PubMedGoogle Scholar
  5. Beisenherz, G., Bolze, H. J., Bücher, Th., Czok, R., Garbade, H. K., Meyer-Arendt, E., Pfleiderer, G.: Diphosphofructose-Aldolase, Phosphoglyceraldehyd-Dehydrogenase, Milchsäure-Dehydrogenase, Glycerophosphat-Dehydrogenase and Pyruvat-Kinase aus Kaninchenmuskulatur in einem Arbeitsgang. Z. Naturforsch. 8 B, 555–557 (1953).Google Scholar
  6. Blackkolb, F., Schlegel, H. G.: Katabolische Repression und Enzymhemmung durch molekularen Wasserstoff bei Hydrogenomonas. Arch. Mikrobiol. 62, 129–143 (1968).PubMedGoogle Scholar
  7. Bray, G. A.: A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Analyt. Biochem. 1, 279–285 (1960).Google Scholar
  8. Cohen, S. S.: Gluconokinase. In: Methods of Enzymology (S. P. Colowick and N. O. Kaplan, Eds.), Vol. I, pp. 350–354. New York: Academic Press 1955.Google Scholar
  9. Cynkin, M. A., Ashwell, G.: Uronic acid metabolism in bacteria. IV. Purification and properties of 2-keto-3-deoxy-D-gluconokinase in Escherichia coli. J. biol. Chem. 235, 1576–1579 (1960).PubMedGoogle Scholar
  10. De Ley, J., Doudoroff, M.: The metabolism of D-galactose in Pseudomonas saccharophila. J. biol. Chem. 227, 745–757 (1957).PubMedGoogle Scholar
  11. De Moss, R. D.: Preparation and determination of gluconic, 2-keto-gluconic, and 5-ketogluconic acids. In: Methods in Enzymology (S. P. Colowick and N. O. Kaplan, Eds.), Vol. III, pp. 233–238. New York: Academic Press 1957.Google Scholar
  12. Eisenberg, R. C., Dobrogosz, W. J.: Gluconate metabolism in Escherichia coli. J. Bact. 93, 941–949 (1967).PubMedGoogle Scholar
  13. El Ghazzawi, E.: Neuisolierung von Clostridium aceticum Wieringa und stoffwechselphysiologische Untersuchungen. Arch. Mikrobiol. 57, 1–19 (1967).Google Scholar
  14. Farmer, J. J., Eagon, R. G.: Aldohexuronic acid catabolism by a soil Aeromonas. J. Bact. 97, 97–106 (1969).PubMedGoogle Scholar
  15. Fraenkel, D. G., Horecker, B. L.: Pathways of D-glucose metabolism in Salmonella typhimurium. J. biol. Chem. 239, 2765–2771 (1964).PubMedGoogle Scholar
  16. Glock, G. E.: Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. In: Handbuch der physiologisch- und pathologisch-chemischen Analyse (Hoppe-Seyler/Thierfelder) Vol. VI A, pp. 414–423. Berlin-Heidelberg-New York: Springer 1964.Google Scholar
  17. Imanaga, Y.: Metabolism of D-glucosamine. III. Enzymatic degradation of D-glucosamine acid. J. Biochem. 45, 647–651 (1958).Google Scholar
  18. Isbell, H. S.: Aldonic acids by oxidation of aldoses with bromine; lead D-xylonate. In: Methods in Carbohydrate Chemistry (R. L. Whistler and M. L. Wolfrom, Eds.) Vol. II, pp. 13–14. New York: Academic Press 1963.Google Scholar
  19. Karlsson, J. L., Volcani, B. E., Barker, H. A.: The nutritional requirements of Clostridium aceticum. J. Bact. 56, 781–782 (1948).Google Scholar
  20. Kersters, K., De Ley, J.: The occurrence of the Entner-Doudoroff pathway in bacteria. Antonie v. Leeuwenhoek 34, 393–408 (1968).Google Scholar
  21. Kersters, K., Matsubara, J. K.: A new pathway of D-gluconate metabolism in the Achromobacter-Alcaligenes group. FEBS Abstracts of Communications, Madrid 1969, p. 372.Google Scholar
  22. Kilgore, W. W., Starr, M. P.: Catabolism of galacturonic and glucuronic acids by Erwinia carotovora. J. biol. Chem. 234, 2227–2235 (1959).PubMedGoogle Scholar
  23. Kovachevich, R., Wood, W. A.: Carbohydrate metabolism by Pseudomonas fluorescens. III. Purification and properties of a 6-phosphogluconate dehydrase. J. Biol. Chem. 213, 745–756 (1955a).PubMedGoogle Scholar
  24. Kovachevich, R., Wood, W. A.: Carbohydrate metabolism by Pseudomonas fluorescens. IV. Purification and properties of 2-keto-3-deoxy-6-phosphogluconate aldolase. J. biol. Chem. 213, 757–767 (1955b).PubMedGoogle Scholar
  25. Lee, C. K., Ordal, Z. J.: Regulatory effect of pyruvate on the glucose metabolism of Clostridium thermosaccharolyticum. J. Bact. 94, 530–536 (1967).PubMedGoogle Scholar
  26. Linke, H. A. B.: Über den Abbau von Fructose durch Clostridium aceticum. Diss., Göttingen 1967.Google Scholar
  27. Martinez, R. J., Rittenberg, S. C.: Glucose dissimilation by Clostridium tetani. J. Bact. 77, 156–163 (1959).PubMedGoogle Scholar
  28. Merrick, J. M., Roseman, S.: Glucosamine metabolism. VI. Glucosaminic acid dehydrase. J. biol. Chem. 235, 1274–1280 (1960).Google Scholar
  29. Paege, L. M., Gibbs, M., Bard, R. C.: Fermentation of 14C-labelled glucose by Clostridium perfringens. J. Bact. 72, 65–67 (1956).PubMedGoogle Scholar
  30. Pfennig, N., Lippert, K. D.: Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch. Mikrobiol. 55, 245–256 (1966).Google Scholar
  31. Portsmouth, D.: Synthesis and properties of 3,6-dideoxyhexulosonic acids and related compounds. A convenient preparation of 3-deoxy-D-erythrohexulosonic acid (3-deoxy-2-keto-D-gluconic acid). Steroselectivity of nucleophilic addition to triose carbonyl. Carbohyd. Res. 8, 193–204 (1968).CrossRefGoogle Scholar
  32. Rose, I. A.: Acetate kinase of bacteria (Acetokinase). In: Methods in Enzymology (S. P. Colowick and N. O. Kaplan, Eds.), Vol. I, pp. 591–595. New York: Academic Press 1955.Google Scholar
  33. Shankar, K., Bard, R. C.: Effect of metallic ions on the growth, morphology, and metabolism of Clostridium perfringens. I. Magnesium. J. Bact. 69, 436–443 (1955).PubMedGoogle Scholar
  34. Shemanova, F. G., Blagoveschchenskii, V. A.: Carbohydrate metabolism in Clostridium oedematiens (C. novyi). Chem. Abstr. 52, 2160 (1958).Google Scholar
  35. Shuster, C. W., Doudoroff, M.: Purification of 2-keto-3-deoxy-6-phosphohexonate aldolase of Pseudomonas saccharophila. Arch. Mikrobiol. 59, 279–286 (1967).PubMedGoogle Scholar
  36. Simmons, J. R., Costilow, R. N.: Enzymes of glucose and pyruvate catabolism in cells, spores, and germinated spores of Clostridium botulinum. J. Bact. 84, 1274–1281 (1962).PubMedGoogle Scholar
  37. Smiley, J. D., Ashwell, G.: Uronic acid metabolism in bacteria. III. Purification and properties of D-altronic and D-mannonic acid dehydrases in Escherichia coli. J. biol. Chem. 235, 1571–1575 (1960).PubMedGoogle Scholar
  38. Stouthamer, A. H.: Glucose and galactose metabolism in Gluconobacter liquefaciens. Biochim. biophys. Acta (Amst.) 48, 484–500 (1961).CrossRefGoogle Scholar
  39. Szymona, M., Doudoroff, M.: Carbohydrate metabolism in Rhodopseudomonas spheroides. J. gen. Microbiol. 22, 167–183 (1960).Google Scholar
  40. Weimberg, R., Doudoroff, M.: The oxidation of L-arabinose by Pseudomonas saccharophila. J. biol. Chem. 217, 607–624 (1965).Google Scholar
  41. Weissbach, A., Hurwitz, J.: The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. J. biol. Chem. 234, 705–709 (1959).PubMedGoogle Scholar
  42. Wood, H. G.: Fermentation of 3,4-14C and 1-14C labelled glucose by Clostridium thermoaceticum. J. biol. Chem. 199, 579–583 (1952).PubMedGoogle Scholar
  43. —, Gest, H.: Determination of formate. In: Methods in Enzymology (S. P. Colowick and N. O. Kaplan, Eds.), Vol. III, pp. 285–292. New York: Academic Press 1957.Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • J. R. Andreesen
    • 1
  • G. Gottschalk
    • 1
  1. 1.Institut für MikrobiologieGöttingen

Personalised recommendations