Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Die Synthese von Poly-β-hydroxybuttersäure durch Hydrogenomonas H 16: Die zu β-Hydroxybutyryl-Coenzym A führenden Reaktionsschritte

  • 41 Accesses

  • 17 Citations

Zusammenfassung

  1. 1.

    Zur Prüfung von zellfreien Extrakten aus Hydrogenomonas auf Pyruvat-Dehydrogenase und Phosphoketolase wurde ein mit Arylamintransacetylase gekoppelter Enzymtest zusammengestellt.

  2. 2.

    Für die Pyruvat-Dehydrogenase wurden nach diesem Test höhere Enzymaktivitäten ermittelt als nach Messungen der NAD-Reduktion und der manometrischen Bestimmung der CO2-Entwicklung und des O2-Verbrauchs.

  3. 3.

    Es wurde die Kinetik der Acetyl-CoA-Bildung aus Pyruvat, Lactat und Acetat an C-autotroph und heterotroph gewachsenen Zellen verfolgt. Die Pyruvat-Dehydrogenase war in den auf Succinat gewachsenen Zellen doppelt so aktiv wie in den autotroph oder mit Acetat gezogenen Zellen. Die Acetat-thiokinase war in den Acetat-Zellen am aktivsten.

  4. 4.

    Phosphoketolase ließ sich zwar in Leuconostoc mesenteroides und Lactobacillus pentosus nachweisen, nicht aber in Hydrogenomonas, Micrococcus denitrificans, Bacillus megaterium, Azotobacter vinelandii, Aspergillus niger und Haselnüssen.

  5. 5.

    Im optischen Test wurden in Hydrogenomonas-Extrakten β-Ketothiolase und β-Hydroxybutyryl-CoA-DH nachgewiesen. Die Beteiligung von Malonyl-CoA an der Synthese kurz- und langkettiger Fettsäuren wurde diskutiert.

Summary

  1. 1.

    A photometric test employing arylamine acetyltransferase for examination of pyruvate-dehydrogenase and phosphoketolase in cell-free extracts of Hydrogenomonas was developed.

  2. 2.

    By means of this test higher enzyme activities were obtained for pyruvate-dehydrogenase than by measurements of NAD-reduction and manometric determinations of CO2-evolution and O2-uptake.

  3. 3.

    The kinetics of acetyl-CoA-formation from pyruvate, lactate, and acetate were observed with C-autotrophically as well as with heterotrophically grown cells. The pyruvate-dehydrogenase was twice as active in cells grown on succinate as in those cells grown under autotrophic conditions or with acetate. The acetyl-CoA synthetase was most active in the acetate-grown cells.

  4. 4.

    Phosphoketolase was found to be present in Leuconostoc mesenteroides and Lactobacillus pentosus but not in Hydrogenomonas, Micrococcus denitrificans, Bacillus megaterium, Azotobacter vinelandii, Aspergillus niger and hazel-nuts.

  5. 5.

    Using optical tests β-ketothiolase and β-hydroxybutyryl-CoA-DH could be demonstrated in extracts of Hydrogenomonas. The participation of malonyl-CoA in the synthesis of short- and long-chain fatty acids was discussed.

This is a preview of subscription content, log in to check access.

Literatur

  1. Altermatt, H. A., A. C. Blackwood, and A. C. Neish: The anaerobic dissimilation of D-xylose-I-C14, D-xylose-2-C14 and D-xylose-5-C14 of Leuconostoc mesenteroides. Canad. J. Biochem. 32, 622–626 (1955).

  2. Alvarez, A., E. Vanderwinkel et J. U. Wiame: L'oxydation de l'acide pyruvique chez la levure. Biochim. biophys. Acta (Amst.) 28, 333–340 (1958).

  3. Bergmann, F. H., J. C. Towne, and R. H. Burris: Assimilation of carbon dioxyde by hydrogen bacteria. J. biol. Chem. 230, 13–23 (1958).

  4. Bergmeyer, H. U.: Methoden der enzymatischen Analyse. Weinheim/Bergstr.: Verlag Chemie 1962.

  5. Bressler, R., and S. J. Wakil: Studies on the mechanism of fatty acid synthesis. IX. The conversion of malonyl-CoA to long chain fatty acids. J. biol. Chem. 236, 1643–1651 (1961).

  6. Bücher, T.: Über ein phosphatübertragendes Gärungsferment. Biochim. biophys. Acta (Amst.) 1, 292–314 (1947).

  7. De Busk, G. B., and L. J. Reed: Coenzymatic functions of thiamine pyrophosphate and lipothiamine pyrophosphate. Fed. Proc. 12, 193–194 (1952).

  8. Busse, M., P. K. Kindel, and M. Gibbs: The heterolactic fermentation. III. Position of C14 in the products of fructose dissimilation by Leuconostoc mesenteroides. J. biol. Chem. 236, 2850–2853 (1961).

  9. Chou, T. C., and F. Lipmann: Separation of acetyl transfer enzymes in pigeon liver extract. J. biol. Chem. 196, 89–103 (1952).

  10. Chowdhury, A. A.: Poly-β-hydroxybuttersäure abbauende Bakterien und Exoenzym. Dissertation. Göttingen 1963. Arch. Mikrobiol. 47, 167–200 (1963).

  11. Ciferri, O., and E. R. Blakley: The metabolism of 2-keto-D-gluconate by cell-free extracts of Leuconostoc mesenteroides. Canad. J. Microbiol. 5, 547–560 (1959).

  12. Chein, C. H., and I. C. Gunsalus: A lipoic acid-mediated synthesis of acetoin from acetylphosphate (AcPO4) by E. coli. Fed. Proc. 13, 191–192 (1954).

  13. Colowick, S. P., and N. O. Kaplan: Methods in enzymology, Vol. 1. New York: Academic Press Inc. Publ. 1955.

  14. Decker, K.: Die aktivierte Essigsäure, Stuttgart: F. Enke 1959.

  15. Dobrogosz, W. J., and R. D. Demoss: Studies on the regulation of ribosephosphateisomerase activity in Pediococcus pentosaceus. Biochim. biophys. Acta (Amst.) 77, 629–638 (1963).

  16. ——: Pentose utilization by Pediococcus pentosaceus. J. Bact. 85, 1356–1364 (1963).

  17. Gibson, D. M., E. B. Titchener, and S. J. Wakil: Requirement for bicarbonate in fatty acid synthesis. J. Amer. chem. Soc. 80, 2908 (1958).

  18. Goldman, D. S.: Enzyme systems in the Mycobacteria. V. The pyruvic dehydrogenase system. Biochim. biophys. Acta (Amst.) 27, 513–518 (1958).

  19. —: Enzyme systems in the Mycobacteria. VI. Further studies on the pyruvic dehydrogenase system. Biochim. biophys. Acta (Amst.) 32, 80–95 (1959).

  20. —: Enzyme systems in the Mycobacteria. IX. The reductive acetylation of lipoic acid. Biochim. biophys. Acta (Amst.) 45, 279–289 (1960).

  21. Goldman, P., A. W. Alberts, and P. R. Vagelos: The condensation reaction of fatty acid biosynthesis. II. Requirement of the enzymes of the condensation reaction for fatty acid synthesis. J. biol. Chem. 238, 1255–1261 (1963).

  22. Gottschalk, G.: Die Biosynthese der Poly-β-hydroxybuttersäure durch Knallgasbakterien. II. Verwertung organischer Säuren. Arch. Mikrobiol. 47, 230–235 (1964a).

  23. —: Die Biosynthese der Poly-β-hydroxybuttersäure durch Knallgasbakterien. III. Synthese aus Kohlendioxyd. Arch. Mikrobiol. 47, 236–250 (1964b).

  24. Gunsalus, I. C., L. Struglia, and D. I. O'Kane: Pyruvic acid metabolism. IV. Occurrence, properties and partial purification of pyruvate oxidation factor. J. biol. Chem. 194, 859–869 (1952).

  25. —: Grouptransfer and acyl-generating functions of lipoic derivates. Mechanism of enzyme action: McElroy, W. D., and B. Glass. Baltimore: Hopkins 1954.

  26. Heath, E. C., J. Hurwitz, and B. L. Horecker: Acetyl phosphate formation in the phosphorolytic cleavage of pentose phosphate. J. Amer. chem. Soc. 78, 5449 (1956).

  27. Hirsch, P., G. Georgiev u. H. G. Schlegel: CO2-Fixierung durch Knallgasbakterien. III. Autotrophe und organotrophe CO2-Fixierung. Arch. Mikrobiol. 46, 79–95 (1963).

  28. Holzer, H.: Wirkungsmechanismus von Thiaminpyrophosphat. Angew. Chem. 73, 721–727 (1961).

  29. —, H. W. Goedde u. S. Schneider: Umsatz von Oxybrenztraubensäure und Glykolaldehyd mit Carboxylase und Alkoholdehydrogenase aus Hefe. Biochem. Z. 327, 245–254 (1955).

  30. —, u. W. Schröter: Zum Wirkungsmechanismus der Phosphoketolase. I. Oxydation verschiedener Substrate mit Ferricyanid zu Glykolsäure. Biochim. biophys. Acta (Amst.) 65, 271–288 (1962).

  31. Hübener, H. J.: Über die Extraktion von Mikroorganismen durch Ultraschall mit einer neuen Apparatur. Biochem. Z. 331, 410–421 (1959).

  32. Hughes, D. E.: A press for disrupting bacteria and other microorganisms. Brit. J. exp. Path. 32, 97–109 (1951).

  33. Hurwitz, J.: Pentose phosphate cleavage by Leuconostoc mesenteroides. Biochim. biophys. Acta (Amst.) 28, 595–602 (1958).

  34. —, u. B. L. Horecker: The purification of phosphoketopentoepimerase from Lactobacillus pentosus and the preparation of xylulose-5-phosphate. J. biol. Chem. 223, 993–1008 (1956).

  35. —, A. Weissbach, B. L. Horecker, and P. Z. Smyrnotis: Spinach phosphoribokinase. J. biol. Chem. 218, 769–783 (1956).

  36. Kaltwasser, H., G. Vogt, u. H. G. Schlegel: Polyphosphatsynthese während der Nitrat-Atmung von Micrococcus denitrificans Stamm 11. Arch. Mikrobiol. 44, 259–265 (1962).

  37. Kaplan, N. O., and F. Lipmann: The assay and distribution of coenzyme A. J. biol. Chem. 174, 37–44 (1948).

  38. Koike, M., L. J. Reed, and W. R. Carrol: α-Ketoacid dehydrogenation complexes. IV. Resolution and reconstitution of the Escherichia coli pyruvate dehydrogenation complex. J. biol. Chem. 238, 30–39 (1963).

  39. Krampitz, L. O., G. Greull, Ch. S. Miller, J. B. Bicking, H. R. Skeggs, and J. M. Sprague: An active acetaldehyde-thiamine intermediate. J. Amer. chem. Soc. 80, 5893–5894 (1958).

  40. —, G. Greull, and I. Suzuki: An active acetaldehyde-thiamine intermediate. Fed. Proc. 18, 266 (1959).

  41. Ljungren, G.: Darstellung von Acetessigsäurelösung. Biochem. Z. 145, 422–425 (1924).

  42. Lynen, F.: Functional group of coenzyme A and its metabolic relations, especially in the fatty acid cycle. Fed. Proc. 12, 683–691 (1953).

  43. Lynen, F.: Die Multienzym-Struktur der Fettsäuresynthese. Vortr. Ges. f. physiol. Chem., Wien 1962.

  44. Macrae, R. M., and J. F. Wilkinson: Poly-β-hydroxybutyrate metabolism in washed suspensions of Bacillus cereus and Bacillus megaterium. J. gen. Microbiol. 19, 210–222 (1958).

  45. Massey, V.: The identity of diaphorase and lipoic dehydrogenase. Biochim. biophys. Acta (Amst.) 30, 205–206 (1958).

  46. —, and C. Veeger: Studies on the reaction mechanism of lipoyl dehydrogenase. Biochim. biophys. Acta (Amst.) 48, 33–47 (1961).

  47. Matthews, J., and L. J. Reed: Purification and properties of a dihydrolipoic dehydrogenase from Spinacea oleracea. J. biol. Chem. 238, 1869–1876 (1963).

  48. McIlwain, H.: Preparation of cell-free bacterial extracts with powdered alumina. J. gen. Microbiol. 2, 288–291 (1948).

  49. Merrick, J. H., and M. Doudoroff: Enzymatic synthesis of poly-β-hydroxybutyric acid in bacteria. Nature (Lond.) 189, 890–892 (1961).

  50. Ochoa, S.: Enzymatic mechanism in the citric acid cycle. Advanc. Enzymol. 15, 183–270 (1954).

  51. Ramakrishnan, C. V., and S. M. Martin: The enzymatic synthesis of citric acid by cell-free extracts of Aspergillus niger. Canad. J. Biochem. 32, 434–439 (1954).

  52. Reed, L. J.: Metabolism and function of lipoic acid. Inter. Symp. Enzyme Chem. Tokyo and Kyoto (1957), 71–77 (1958).

  53. —, and B. G. de Busk: Mechanism of enzymatic oxidative decarboxylation of pyruvate. J. Amer. chem. Soc. 75, 1261–1262 (1953).

  54. —, and M. Koike: Identification of Escherichia coli fraction B (dihydrolipoic dehydrogenase) as a flavoprotein. Fed. Proc. 18, 308 (1959).

  55. —: Resolution of pyruvate and α-ketoglutarate dehydrogenation complex. Fed. Proc. 20, 238 (1961).

  56. la Rivière, J. W. M.: On the microbial metabolism of the tartaric acid isomeres. Dissertation. Delft 1958.

  57. Schindler, J., u. H. G. Schlegel: D(-)-β-Hydroxybuttersäure-Dehydrogenase aus Hydrogenomonas H 16. Biochem. Z. 339, 154–161 (1963).

  58. Schlegel, H. G., H. Kaltwasser u. G. Gottschalk: Ein Submersverfahren zur Kultur wasserstoffoxydierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch. Mikrobiol. 38, 209–222 (1961).

  59. —, u. G., Gottschalk: Poly-β-hydroxybuttersäure ihre Verbreitung, Funktion und Biosynthese. Angew. Chem. 74, 342–347 (1962).

  60. Schramm, M., V. Klybas, and E. Racker: Phosphorolytic cleavage of fructose-6-phosphate phosphoketolase from Acetobacter xylinum. J. biol. Chem. 233, 1283–1288 (1958).

  61. Schröter, W., u. H. Holzer: Zum Wirkungsmechanismus der Phosphoketolase. II. Umsatz von Thiaminpyrophosphat aktiviertem Glycolaldehyd. Biochim. biophys. Acta (Amst.) 77, 474–481 (1963).

  62. Searis, R. L., and D. R. Sanadi: Dihydrothioctyl dehydrogenase—a flavoprotein. Proc. nat. Acad. Sci. (Wash.) 45, 697–701 (1959).

  63. Simon, E. J., and D. Shemin: The preparation of S-succinyl coenzyme A. J. Amer. chem. Soc. 75, 2520 (1953).

  64. Stansly, P. G., and H. Beinert: Synthesis of butyryl-coenzyme A by reversal of the oxidative pathway. Biochim. biophys. Acta (Amst.) 11, 600–601 (1953).

  65. Strecker, H. J., and S. Ochoa: Pyruvate oxidation system and acetoin formation. J. biol. Chem. 209, 313–326 (1954).

  66. Stumpf, P. K., and B. L. Horecker: The role of xylulose-5-P in xylose metabolism of Lactobacillus pentosus. J. biol. Chem. 218, 753–768 (1956).

  67. Wakil, S. J., R. Bressler: Studies on the mechanism of fatty acid synthesis. X. Reduced triphosphopyridine nucleotide-acetoacetyl coenzyme A reductase. J. biol. Chem. 237, 687–693 (1962).

  68. Wren, A., and V. Massey: Lipoyl dehydrogenase from Saccharomyces cerevisiae. Biochem. J. 89, p 47 (1963).

Download references

Author information

Additional information

Auszug aus der gleichlautenden Dissertation der mathematisch-naturwissenschaftlichen Fakultät der Universität Göttingen 1964.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schindler, J. Die Synthese von Poly-β-hydroxybuttersäure durch Hydrogenomonas H 16: Die zu β-Hydroxybutyryl-Coenzym A führenden Reaktionsschritte. Archiv. Mikrobiol. 49, 236–255 (1964). https://doi.org/10.1007/BF00409747

Download citation