Archives of Microbiology

, Volume 150, Issue 1, pp 95–102 | Cite as

Metabolism of 2,4-dichlorophenoxyacetic acid, 4-chloro-2-methylphenoxyacetic acid and 2-methylphenoxyacetic acid by Alcaligenes eutrophus JMP 134

  • Dietmar Helmut Pieper
  • Walter Reineke
  • Karl-Heinrich Engesser
  • Hans-Joachim Knackmuss
Original Papers


Of eleven substituted phenoxyacetic acids tested, only three (2,4-dichloro-, 4-chloro-2-methyl- and 2-methylphenoxyacetic acid) served as growth substrates for Alcaligenes eutrophus JMP 134. Whereas only one enzyme seems to be responsible for the initial cleavage of the ether bond, there was evidence for the presence of three different phenol hydroxylases in this strain. 3,5-Dichlorocatechol and 5-chloro-3-methylcatechol, metabolites of the degradation of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-methylphenoxyacetic acid, respectively, were exclusively metabolized via the ortho-cleavage pathway. 2-Methylphenoxyacetic acid-grown cells showed simultaneous induction of meta- and ortho-cleavage enzymes. Two catechol 1,2-dioxygenases responsible for ortho-cleavage of the intermediate catechols were partially purified and characterized. One of these enzymes converted 3,5-dichlorocatechol considerably faster than catechol or 3-chlorocatechol. A new enzyme for the cycloisomerisation of muconates was found, which exhibited high activity against the ring-cleavage products of 3,5-dichlorocatechol and 4-chlorocatechol, but low activities against 2-chloromuconate and muconate.

Key words

Phenoxyacetic acids Phenols Catechols Muconates Alcaligenes eutrophus JMP 134 Orthocleavage pathways Meta-cleavage pathway 

Non-standard abbreviations


4-chloro-2-methylphenoxyacetic acid


2-methylphenoxyacetic acid


phenoxyacetic acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartels I, Knackmuss HJ, Reineke W (1984) Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols. Appl Environ Microbiol 47:500–505Google Scholar
  2. Beadle CA, Smith ARW (1982) The purification and properties of 2,4-dichlorophenol hydroxylase from a strain of Acinetobacter species. Eur J Biochem 123:323–332Google Scholar
  3. Bollag JM, Helling CS, Alexander M (1968a) 2,4-D metabolism: Enzymatic hydroxylation of chlorinated phenols. J Agr Food Chem 16:826–828Google Scholar
  4. Bollag J, Briggs GG, Dawson JE, Alexander M (1968b) 2,4-D metabolism: Enzymatic degradation of chlorocatechols. J Agr Food Chem 16:829–833Google Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254Google Scholar
  6. Dagley S (1978) Pathways for the utilization of organic growth substrates. In: Gunsalus LC (ed) The bacteria, vol VI, Bacterial diversity. Academic Press, New York, pp 305–388Google Scholar
  7. Don RH, Pemberton JM (1981) Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J Bacteriol 145:681–686Google Scholar
  8. Don RH, Weightman AJ, Knackmuss HJ, Timmis KN (1985) Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorbenzoate in Alcaligenes eutrophus JMP 134 (pJP4). J Bacteriol 161:85–96Google Scholar
  9. Dorn E, Knackmuss HJ (1978a) Chemical structure and biodegradability of halogenated aromatic compounds: two catechol 1,2-dioxygenases from a 3-chlorobenzoate grown Pseudomonad. Biochem J 174:73–84Google Scholar
  10. Dorn E, Knackmuss HJ (1978b) Chemical structure and biodegradability of halogenated aromatic compounds: substituent effects on 1,2-dioxygenation of catechol. Biochem J 174:85–94Google Scholar
  11. Dorn E, Hellwig M, Reineke W, Knackmuss HJ (1974) Isolation and characterization of a 3-chlorobenzoate degrading Pseudomonad. Arch Microbiol 99:61–70Google Scholar
  12. Evans WC, Smith BSW, Moss P, Fernley HN (1971a) Bacterial metabolism of 4-chlorophenoxyacetate. Biochem J 122: 509–517Google Scholar
  13. Evans WC, Smith BSW, Fernley HN, Davies JI (1971b) Bacterial metabolism of 2,4-dichlorophenoxyacetate. Biochem J 122:543–552Google Scholar
  14. Friedrich B, Meyer M, Schlegel HG (1983) Transfer and expression of the herbicide-degrading plasmid pJP4 in aerobic autotrophic bacteria. Arch Microbiol 143:92–97Google Scholar
  15. Gaal AB, Neujahr HY (1980) Maleylacetate reductase from Trichosporum cutaneum. Biochem J 185:783–786Google Scholar
  16. Gamar Y, Gaunt JK (1971) Bacterial metabolism of 4-chloro-2-methylphenoxyacetate (MCPA): formation of glyoxylate by side-chain cleavage. Biochem J 122:527–531Google Scholar
  17. Gaunt JK, Evans WC (1971a) Metabolism of 4-chloro-2-methylphenoxyacetate by a soil Pseudomonad: preliminary evidence for the metabolic pathway. Biochem J 122:519–526Google Scholar
  18. Gaunt JK, Evans WC (1971b) Metabolism of 4-chloro-2-methylphenoxyacetate by a soil Pseudomonad: ring fission, lactonizing and delactonizing enzymes. Biochem J 122:533–542Google Scholar
  19. Hartmann J, Reineke W, Knackmuss HJ (1979) Metabolism of 3-chloro-, 4-chloro- and 3,5-dichlorobenzoate by a Pseudomonad. Appl Environ Microbiol 37:421–428Google Scholar
  20. Hopper DJ, Chapman PJ (1971) Gentisic acid and its 3- and 4-methylsubstituted analogues as intermediates in the bacterial degradation of m-cresol, 3,5-xylenol and 2,5-xylenol. Biochem J 122:19–28Google Scholar
  21. Hopper DJ, Taylor DG (1975) Pathways for the degradation of m-cresol and p-cresol in Pseudomonas putida. J Bacteriol 122:1–6Google Scholar
  22. Horvath RS (1970) Co-metabolism of methyl- and chloro-substituted catechols by an Achromobacter sp. possessing a new meta-cleaving oxygenase. Biochem J 119:871–876Google Scholar
  23. Jeenes DJ, Reineke W, Knackmuss HJ, Williams PA (1982) TOL plasmid pWWO in constructed halobenzoate-degrading Pseudomonas strains: enzyme regulation and DNA structure. J Bacteriol 150:180–187Google Scholar
  24. Kaminski U, Janke D, Prauser H, Fritsche W (1983) Degradation of aniline and monochloroanilines by Rhodococcus sp. An 117 and a Pseudomonad: a comparative study. Z Allg Microbiol 22:235–246Google Scholar
  25. Keat MJ, Hopper DJ (1978) p-Cresol and 3,5-xylenol methyl-hydroxylases in Pseudomonas putida N.C.I.B. 9869. Biochem J 175:649–658Google Scholar
  26. Kilpi S, Backström V, Korhola M (1983) Degradation of catechol, methylcatechols and chlorocatechols by Pseudomonas sp. HV3. FEMS Microbiol Lett 18:1–5Google Scholar
  27. Klecka GM, Gibson DT (1981) Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol. Appl Environ Microbiol 41:1159–1165Google Scholar
  28. Latorre J, Reineke W, Knackmuss HJ (1984) Microbial metabolism of chloroanilines: enhanced evolution by natural genetic exchange. Arch Microbiol 140:159–165Google Scholar
  29. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666Google Scholar
  30. Liu T, Chapman PJ (1984) Purification and properties of a plasmidencoded 2,4-dichlorophenol hydroxylase. FEBS Lett 173: 314–318Google Scholar
  31. Loos MA, Roberts RN, Alexander M (1967) Phenols as intermediates in the decomposition of phenoxyacetates by an Arthrobacter sp. Can J Microbiol 13:679–690Google Scholar
  32. McIntire W, Hopper DJ, Singer TP (1985) p-Cresol methyl-hydroxylases: assay and general properties. Biochem J 228:325–335Google Scholar
  33. Miller DJ (1981) Toluate metabolism in nocardioform Actinomycetes: utilization of the enzymes of the 3-oxoadipate pathway for the degradation of methyl-substituted analogues. In: Schaal KP, Pulverer G (eds) Actinomycetes, Zbl Bakt Suppl 11. Fischer, Stuttgart New York, pp 355–361Google Scholar
  34. Murray K, Duggleby CJ, Sala-Trepat JM, Williams PA (1972) The metabolism of benzoate and methylbenzoates via the metacleavage pathway by Pseudomonas arvilla mt-2. Eur J Biochem 28:301–310Google Scholar
  35. Nakazawa T, Yokota T (1973) Benzoate metabolism in Pseudomonas putida (arvilla) mt-2: demonstration of two benzoate pathways. J Bacteriol 115:262–267Google Scholar
  36. Nozaki M (1970) Metapyrocatechase (Pseudomonas). In: Tabor H, Tabor CW (eds) Methods in enzymology, vol 17A. Academic Press, New York, pp 522–525Google Scholar
  37. Ornston LN (1966) The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. II. Enzymes of the protocatechuate pathway. J Biol Chem 241:3787–3794Google Scholar
  38. Pieper DH (1986) Metabolismus von substituierten Phenoxyacetaten, Phenolen and Benzoaten durch Alcaligenes eutrophus JMP 134 and Derivate. Dissertation, Universität WuppertalGoogle Scholar
  39. Pieper DH, Engesser KH, Don RH, Timmis KN, Knackmuss HJ (1985) Modified ortho-cleavage pathway in Alcaligenes eutrophus JMP 134 for the degradation of 4-methylcatechol. FEMS Microbiol Lett 29:63–67Google Scholar
  40. Powlowski JB, Dagley S (1985) β-Ketoadipate pathway in Trichosporum cutaneum modified for methyl-substituted metabolites. J Bacteriol 163:1126–1135Google Scholar
  41. Reineke W, Knackmuss HJ (1980) Hybrid pathway for chlorobenzoate metabolism in Pseudomonas sp. B 13 derivatives. J Bacteriol 142:467–473Google Scholar
  42. Reineke W, Knackmuss HJ (1984) Microbial metabolism of haloaromatics: isolation and properties of a chlorobenzenedegrading bacterium. Appl Environ Microbiol 47:395–402Google Scholar
  43. Reineke W, Jeenes DJ, Williams PJ, Knackmuss HJ (1982) TOL plasmid pWWO in constructed halobenzoate-degrading Pseudomonas strains: prevention of meta pathway. J Bacteriol 150:195–201Google Scholar
  44. Rubio MA, Engesser KH, Knackmuss HJ (1986) Microbial metabolism of chlorosalicylates: accelerated evolution by natural genetic exchange. Arch Microbiol 145:116–122Google Scholar
  45. Sala-Trepat JM, Murray K, Williams PA (1972) The metabolic divergence in the meta-cleavage of catechols by Pseudomonas putida NCIB 10015: physiological significance and evolutionary implications. Eur J Biochem 28:347–356Google Scholar
  46. Schmidt E, Knackmuss HJ (1980) Chemical structure and biodegradability of halogenated aromatic compounds: conversion of chlorinated muconic acids into maleoylacetic acid. Biochem J 192:339–347Google Scholar
  47. Schmidt E, Remberg G, Knackmuss HJ (1980) Chemical structure and biodegradability of halogenated aromatic compounds: halogenated muconic acids as intermediates. Biochem J 192:331–337Google Scholar
  48. Schmidt K, Liaaen Jensen S, Schlegel HG (1963) Die Carotinoide der Thiorhodaceae. I. Okenon als Hauptcarotinoid von Chromatium okenii Perty. Arch Mikrobiol 46:117–126Google Scholar
  49. Schreiber A, Hellwig M, Dorn E, Reineke W, Knackmuss HJ (1980) Critical reactions in fluorobenzoic acid degradation by Pseudomonas sp. B 13. Appl Environ Microbiol 39:58–67Google Scholar
  50. Sharpee KW, Duxbury JM, Alexander M (1973) 2,4-Dichlorophenoxyacetate metabolism by Arthrobacter sp.: accumulation of a chlorobutenolide. Appl Microbiol 26:445–447Google Scholar
  51. Streber WR, Timmis KN, Zenk MH (1987) Analysis, cloning and high-level expression of 2,4-dichlorophenoxyaceteate monooxygenase gene tfdA of Alcaligenes eutrophus JMP 134. J Bacteriol 169:2950–2955Google Scholar
  52. Surovtseva EG, Volnova AI (1981) 4-Chlorocatechol, and inhibitor of pyrocatechol 2,3-dioxygenase in Alcaligenes faecalis. Microbiologiya 50:386–388Google Scholar
  53. Tiedje JM, Alexander M (1969) Enzymatic cleavage of the ether bond of 2,4-dichlorophenoxyacetate. J Agr Food Chem 17:1080–1084Google Scholar
  54. Tiedje JM, Duxbury JM, Alexander M, Dawson JE (1969) 2,4-D metabolism: pathway of degradation of chlorocatechols by Arthrobacter sp. J Agr Food Chem 17:1021–1026Google Scholar
  55. Williams PA, Murray K (1974) Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. J Bacteriol 120:416–423Google Scholar
  56. Winnacker K, Küchler L (1972) Chemische Technoloogie, Band 4, Organische Technologie. Hanser, MünchenGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Dietmar Helmut Pieper
    • 1
  • Walter Reineke
    • 2
  • Karl-Heinrich Engesser
    • 1
  • Hans-Joachim Knackmuss
    • 1
  1. 1.Institut für Mikrobiologie der Universität StuttgartStuttgart 1Federal Republic of Germany
  2. 2.Gesamthochschule WuppertalLehrstuhl für chemische Mikrobiologie der Bergischen UniversitätWuppertal 1Federal Republic of Germany

Personalised recommendations