Archives of Microbiology

, Volume 150, Issue 1, pp 78–84

Degradation of chlorosubstituted aromatic compounds by Pseudomonas sp. strain B13: fate of 3,5-dichlorocatechol

  • Uwe Schwein
  • Eberhard Schmidt
  • Hans-Joachim Knackmuss
  • Walter Reineke
Original Papers

Abstract

The degradation of 3,5-dichlorocatechol by enzymes of 3-chlorobenzoate-grown cells of Pseudomonas sp. strain B13 was studied. The following compounds were formed from 3,5-dichlorocatechol: trans-2-chloro-4-carboxymethylenebut-2-en-4-olide, cis-2-chloro-4-carboxymethylenebut-2-en-4-olide, and chloroacetylacrylate as the decarboxylation product of 2-chloromaleylacetate. They were identified by chromatographic and spectroscopic methods (UV, MS, PMR). An enzyme activity converting trans-2-chloro-4-carboxymethylenebut-2-en-4-olide into the cis-isomer was observed.

Key words

3,5-Dichlorocatechol degradation Pseudomonas sp. strain B13 trans-2-chloro-4-carboxymethylenebut-2-en-4-olide isomerase 

Abbreviations

3CB

3-chlorobenzoate

4CB

4-chlorobenzoate

3,5DCB

3,5-dichlorobenzoate

2,4D

2,4-dichlorophenoxyacetate

NOE

Nuclear-Overhauser-Effect

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biltz H, Stepf K (1904) Über die Chlorierung des Salicylaldehyds. Ber Dt Chem Ges 37:4022–4031Google Scholar
  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem 72:248–254Google Scholar
  3. Chapman PJ (1979) Degradation mechanisms. In: EPA Workshop: Microbial degradation of pollutants in marine environments. EPA-600/9-79-012, 28–66Google Scholar
  4. Chapman PJ, Ribbons DW (1976) Metabolism of resorcinylic compounds by bacteria: alternative pathways for resorcinol catabolism in Pseudomonas putida. J Bacteriol 125:985–998Google Scholar
  5. Dakin HD (1909) The oxidation of hydroxy derivatives of benzaldehyde, acetophenone and related substances. J Am Chem Soc 42:477–498Google Scholar
  6. Dorn E, Knackmuss H-J (1978) Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects of 1,2-dioxygenation of catechol. Biochem J 174:85–94Google Scholar
  7. Dorn E, Hellwig M, Reineke W, Knackmuss H-J (1974) Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch Microbiol 99:61–70Google Scholar
  8. Duxbury JM, Tiedje JM, Alexander M, Dawson JE (1970) 2,4-D metabolism: enzymatic conversion of chloromaleylacetic acid to succinic acid. J Agric Food Chem 18:199–201Google Scholar
  9. Evans WC, Smith BSW, Fernley HN, Davies JI (1971) Bacterial metabolism of 2,4-dichlorophenoxyacetate. Biochem J 122:543–551Google Scholar
  10. Reineke W, Knackmuss H-J (1978) Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of benzoic acid. Biochim Biophys Acta 542:412–423Google Scholar
  11. Reineke W, Knakmuss H-J (1979) Construction of haloaromatics utilising bacteria. Nature (Lond) 277:385–386Google Scholar
  12. Reineke W, Knackmuss H-J (1980) Hybrid pathway for chlorobenzoate metabolism in Pseudomonas sp. B13 derivatives. J Bacteriol 142:467–473Google Scholar
  13. Reineke W, Wessels SW, Rubio MA, Latorre J, Schwien U, Schmidt E, Schlömann M, Knackmuss H-J (1982) Degradation of monochlorinated aromatics following transfer of genes encoding chlorocatechol catabolism. FEMS Microbiol Lett 14:291–294Google Scholar
  14. Schmidt E, Knackmuss H-J (1980) Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid. Biochem J 192:339–347Google Scholar
  15. Schmidt E, Remberg G, Knackmuss H-J (1980) Chemical structure and biodegradability of halogenated aromatic compounds. Halogenated muconic acids as intermediates. Biochem J 192:331–337Google Scholar
  16. Schreiber A, Hellwig M, Dorn E, Reineke W, Knackmuss H-J (1980) Critical reactions in fluorobenzoic acid degradation by Pseudomonas sp. B13. Appl Environ Microbiol 39:58–67Google Scholar
  17. Sharpee RW, Duxbury JM, Alexander M (1973) 2,4-Dichlorophenoxyacetate metabolism by Arthrobacter sp.: accumulation of a chlorobutenolide. Appl Microbiol 28:181–184Google Scholar
  18. Tiedje JM, Duxbury JM, Alexander M, Dawson JE (1969) 2,4-D metabolism: pathway of degradation of chlorocatechols by Arthrobacter sp. J Agric Food Chem 17:1021–1026Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Uwe Schwein
    • 1
  • Eberhard Schmidt
    • 1
  • Hans-Joachim Knackmuss
    • 1
  • Walter Reineke
    • 1
  1. 1.Gesamthochschule WuppertalChemische Mikrobiologie der Bergischen UniversitätWuppertal 1Federal Republic of Germany
  2. 2.E. MerckDarmstadt 1Federal Republic of Germany
  3. 3.Institut für Mikrobiologie der Universität StuttgartStuttgart 1Federal Republic of Germany

Personalised recommendations