Archiv für Mikrobiologie

, Volume 32, Issue 3, pp 270–277 | Cite as

Studies with cyanidium caldarium, an anomalously pigmented chlorophyte

  • Mary Belle Allen


Cyanidium caldarium, an alga found in acid hot springs troughout the world, has a morphology and developmental history resembling those of Chlorella, but contains C-phycocyanin and no chlorophyll other than chlorophyll a. The reasons for considering it to be a member of the Chlorophyta are reviewed.

Cyanidium is also remarkable for its thermal and acid tolerance. It grows readily in the dark on sugar media. However, light is required for the formation of chlorophyll and phycocyanin except in occasional variant cells which can form limited amounts of these pigments in the dark. Light-grown Cyanidium carries out normal green plant photosynthesis but resembles the red and some of the blue-green algae in that chlorophyll-absorbed light is used with lower efficiency than that absorbed by phycocyanin.

The possible significance of the unusual pigmentation of Cyanidium is discussed.


Sugar Chlorophyll Photosynthesis Chlorella Lower Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, M. B.: Arch. Mikrobiol. 17, 34 (1952).Google Scholar
  2. Rapp. et comm. VIIIe Cong. Int. de Bot. Sec. 7, p. 41 (1954).Google Scholar
  3. Comm. to IV Intern. Cong. Biochemistry. In press (1958a).Google Scholar
  4. Proc. Brookhaven Symposium on the Photochemical Apparatus. In press (1958b).Google Scholar
  5. Allen, M. B., and D. I. Arnon: Plant Physiol. 30, 366 (1955).Google Scholar
  6. Allen, M. B., J. J. A. McLaughlin and E. C. Dougherty: in preparation (1958).Google Scholar
  7. Allison, F. E., S. P. Hoover and H. J. Morris: Bot. Gaz. 98, 433 (1937).Google Scholar
  8. Arnon, D. I., P. S. Ichioka, G. Wessel, A. Fujiwara and J. T. Woolley: Physiol. Plantarum 8, 538 (1955).Google Scholar
  9. Boresch, K.: Ber. d. d. bot. Ges. 40, 288 (1922).Google Scholar
  10. Bourelly, P.: Personal communication (1954).Google Scholar
  11. Copeland, J. E.: Ann. New York Acad. Sci. 36, 1 (1936).Google Scholar
  12. Cramer, M., and J. Myers: Arch. Mikrobiol. 17, 384 (1952).Google Scholar
  13. Dougherty, E. C., and M. B. Allen: J. Protozool. 3, suppl., 12 (1956).Google Scholar
  14. Comm. to XVth Intern. Congr. of Zool. In press (1958).Google Scholar
  15. Duysens, L. N. M.: Transfer of excitation energy in photosynthesis. Dissertation. Utrecht 1952.Google Scholar
  16. Emoto, Y., and H. Hirose: J. Jap. Bot. 16, 410 (1940).Google Scholar
  17. Emoto, Y., and Y. Yoneda: Ecol. Rev. 6, 10 (1940).Google Scholar
  18. Fogg, G. E.: Bact. Rev. 20, 148 (1956).Google Scholar
  19. Geitler, L.: Arch. Hydrobiol., suppl. Bd. 14, 388–391, 553–715 (1936).Google Scholar
  20. Goodwin, T. W.: J. gen. Microbiol. 17, 467 (1957).Google Scholar
  21. Granick, S.: Ann. Rev. Plant Physiol. 2, 115 (1951).Google Scholar
  22. Haxo, F. T., and L. R. Blinks: J. gen. Physiol. 33, 389 (1950).Google Scholar
  23. Haxo, F., C. ÓhEocha and P. Norris: Arch. Biochem. 54, 162 (1955).Google Scholar
  24. Hirose, H.: Bot. Mag. (Tokyo) 63, 107 (1950).Google Scholar
  25. Negoro, K.: Bot. Mag. (Tokyo) 57, 302 (1943).Google Scholar
  26. ÓhEocha, C.: Arch. Biochem. 73, 207 (1958).Google Scholar
  27. Pennington, W.: J. Bot. 79, 83 (1941).Google Scholar
  28. Provasoli, L.: Boll. Zool. 22, 143, (1956/1957).Google Scholar
  29. Rabinowitch, E. R.: Photosynthesis and Related Processes, Vol. II, part 1. Interscience. New York 1951.Google Scholar
  30. Schiller, J.: Österr. bot. Z. 101, 236–284 (1954).Google Scholar
  31. Setchell, W. A.: Phycotheca Borealis Americana, Fasc. 18, No. 851 (1901).Google Scholar
  32. Shibata, K., A. A. Benson and M. Calvin: Biochim. biophys. Acta 15, 461 (1954).Google Scholar
  33. Smith, J. H. C., and A. Benitez: in Modern Methods of Plant Analysis, vol. IV, p. 142, Berlin: Springer 1955.Google Scholar
  34. Stokes, J. L.: Soil Sci. 49, 265 (1940).Google Scholar
  35. Strain, H. H.: Chloroplast pigments and chromatographic analysis. 32nd Annual Priestley Lectures, Penn. State Univ. (1958).Google Scholar
  36. Swingle, S. M., and A. Tiselius: Biochem. J. 48, 171 (1951).Google Scholar
  37. Tilden, J. E.: American Algae, No. 198 (1896).Google Scholar
  38. Bot. Gaz. 25, 89 (1898).Google Scholar
  39. West, G. S.: J. Bot. 42, 287 (1904).Google Scholar
  40. Winterstein, A., and G. Stein: Hoppe-Seylers Z. physiol. Chem. 220, 263 (1933).Google Scholar
  41. Work, E. J., and D. L. Dewey: J. gen. Microbiol. 9, 394 (1953).Google Scholar

Copyright information

© Springer-Verlag 1959

Authors and Affiliations

  • Mary Belle Allen
    • 1
  1. 1.Laboratory of Comparative Physiology and Morphology of The Kaiser FoundationUniversity of CaliforniaBerkeley

Personalised recommendations