Archives of Microbiology

, Volume 121, Issue 1, pp 29–36 | Cite as

Siroheme sulfite reductase isolated from Chromatium vinosum. Purification and investigation of some of its molecular and catalytic properties

  • Michael Schedel
  • Maria Vanselow
  • Hans G. Trüper


Cells of the phototrophic bacterium Chromatium vinosum strain D were shown to contain a siroheme sulfite reductase after autotrophic growth in a sulfide/bicarbonate medium. The enzyme could not be detected in cells grown heterotrophically in a malate/sulfate medium. Siroheme sulfite reductase was isolated from autotrophic cells and obtained in an about 80% pure preparation which was used to investigate some molecular and catalytic properties of the enzyme. It was shown to consist of two different types of subunits with molecular weights of 37,000 and 42,000, most probably arranged in an α4β4-structure. The molecular weight of the native enzyme was determined to 280,000, 51 atoms of iron and 47 atoms of acid-labile sulfur were found per enzyme molecule. The absorption spectrum indicated siroheme as prosthetic group; it had maxima at 280 nm, 392 nm, 595 nm, and 724 nm. The molar extinction coefficients were determined as 302×103 cm2xmmol-1 at 392 nm, 98×103 cm2 xmmol-1 at 595 nm and 22×103 cm2x-mmol-1 at 724 nm. With reduced viologen dyes as electron donor the enzyme reduced sulfite to sulfide, thiosulfate, and trithionate. The turnover number with 59 (2 e-/enzyme moleculexmin) was low. The pH-optimum was at 6.0. C. vinosum sulfite reductase closely resembled the corresponding enzyme from Thiobacillus denitrificans and also desulfoviridin, the dismilatory sulfite reductase from Desulfovibrio species. It is proposed that C. vinosum catalyses anaerobic oxidation of sulfide and/or elemental sulfur to sulfite in the course of dissimilatory oxidation of reduced sulfur compounds to sulfate.

Key words

Chromatium vinosum Sulfur metabolism Sulfite reductase Siroheme 

Non-common abbreviations


adenylyl sulfate


sodium dodecyl sulfate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Fischer, U., Trüper, H. G.: Cytochrome c 550 of Thiocapsa roseopersicina: Properties and reduction by sulfide. FEMS Lett. 1, 87–90 (1977)Google Scholar
  2. Grant, W. M.: Colorimetric determination of sulfur dioxide. Ind. Eng. Chem. Anal. Ed. 19, 345–346 (1947)Google Scholar
  3. Hashwa, F.: Die enzymatische Thiosulfatspaltung bei phototrophen Bakterien. Diss. Univ. Göttingen (1972)Google Scholar
  4. Hashwa, F.: Thiosulfate metabolism in some red phototrophic bacteria. Plant Soil 43, 41–47 (1975)Google Scholar
  5. Kelly, D. P., Chambers, L. A., Trudinger, P. A.: Cyanolysis and spectrophotometric estimation of trithionate in a mixture with thiosulfate and tetrathionate. Anal. Chem. 41, 898–901 (1969)Google Scholar
  6. King, T. E., Morris, R. O.: Determination of acid-labile sulfide and sulfhydryl groups. In: Methods in enzymology. S.P. Colowick, N. O. Kaplan, (eds.), Vol. 10, pp. 635–641. New York: Academic Press 1966Google Scholar
  7. Kobayashi, K., Seki, Y., Ishimoto, M.: Biochemical studies on sulfate-reducing bacteria. XIII. Sulfite reductase from Desulfovibrio vulgaris-mechanism of trithionate, thiosulfate, and sulfide formation and enzymatic properties. J. Biochem. 75, 519–529 (1974)Google Scholar
  8. Kobayashi, K., Takahashi, E., Ishimoto, M.: Biochemical studies on sulfate-reducing bacteria. XI. Purification and properties of sulfite reductase, desulfoviridin. J. Biochem. 72, 879–887 (1972)Google Scholar
  9. Lee, J. P., Le Gall, J., Peck, H. D., Jr.: Isolation of assimilatory and dissimilatory-type sulfite reductases from Desulfovibrio vulgaris. J. Bacteriol. 115, 529–542 (1973)Google Scholar
  10. Lowry, O. H., Rosebrough, H. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)Google Scholar
  11. Murphy, M. J., Siegel, L. M.: Siroheme and sirohydrochlorin. The basis for a new type of porphyrin-related prosthetic group common to both assimilatory and dissimilatory sulfite reductases. J. Biol. Chem. 248, 6911–6919 (1973)Google Scholar
  12. Peck, H. D., Jr., Tedro, S., Kamen, M. D.: Sulfite reductase activity in extracts of various photosynthetic bacteria. Proc. Nat. Acad. Sci. (U.S.A.) 71, 2404–2406 (1974)Google Scholar
  13. Pfanstiel, R.: Salts of dithionic acid. In: Inorganic synthesis. W. C. Fernelius, ed. N. Y. 2, 167–172 (1946)Google Scholar
  14. Pfennig, N., Lippert, K. D.: Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch. Mikrobiol. 55, 245–256 (1966)Google Scholar
  15. Sandell, E. B.: Colorimetric determination of traces of metals. Interscience Publishers, New York (1944)Google Scholar
  16. Schedel, M., Trüper, H. G.: Purification of Thiobacillus denitrificans siroheme sulfite reductase and investigation of some molecular and catalytic properties. Biochim. Biophys. Acta (in press, 1979)Google Scholar
  17. Siegel, L. M.: Biochemistry of the sulfur cycle. In: Metabolic pathways. 3rd edition. Metabolism of sulfur compounds. D. N. Greenberg (ed.), Vol. 7, pp. 217–286. New York: Academic Press 1975Google Scholar
  18. Stamm, H., Goehring, M.: Zur Kenntnis der Polythionsäuren und ihrer Bildung. VI. Neue Verfahren zur Darstellung von Kaliumtrithionat und von Kaliumtetrathionat. Z. Anorg. Allg. Chem. 250, 226–228 (1942)Google Scholar
  19. Thiele, H. H.: Sulfur metabolism in Thiorhodaceae. V. Enzymes of sulfur metabolism in Thiocapsa floridana and Chromatium species. Antonie van Leeuwenhoek. J. Microbiol. Serol. 34, 350–356 (1968)Google Scholar
  20. Tiselius, A., Hjerten, S., Levin, Ö.: Protein chromatography on calcium phosphate columns. Arch. Biochem. Biophys. 65, 132–155 (1956)Google Scholar
  21. Trüper, H. G.: The enzymology of sulfur metabolism in phototrophic bacteria — a review. Plant Soil 43, 29–39 (1975)Google Scholar
  22. Trüper, H. G., Peck, H. D. Jr.: Formation of adenylyl sulfate in phototrophic bacteria. Arch. Mikrobiol. 73, 125–142 (1970)Google Scholar
  23. Trüper, H. G., Schlegel, H. G.: Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek, J. Microbiol. Serol. 30, 225–238 (1964)Google Scholar
  24. Wagner, G. C., Kassner, R. J., Kamen, M. D.: Redox potentials of certain vitamins K: Implications for a role in sulfite reduction by obligately anaerobic bacteria. Proc. Nat. Acad. Sci. (U.S.A.) 71, 253–256 (1974)Google Scholar
  25. Weber, K., Pringle, J. R., Osborn, M.: Measurement of molecular weights by electrophoresis on SDS-acrylamide gel. In: Methods in enzymology. S. P. Colowick, N. O. Kaplan (eds.), Vol. 26, pp. 3–27. New York: Academic Press, 1972Google Scholar
  26. Willstätter, R., Kraut, H.: Über ein Tonerde-Gel von der Formel Al(OH)3. II. Mitteilung über Hydrate und Hydrogele. Chem. Ber. 56, 1117–1121 (1923)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Michael Schedel
    • 1
  • Maria Vanselow
    • 1
  • Hans G. Trüper
    • 1
  1. 1.Institut für Mikrobiologie der Universität BonnBonn 1Federal Republic of Germany

Personalised recommendations