Planta

, Volume 159, Issue 6, pp 518–528

Photooxidative destruction of chloroplasts and its consequences for cytosolic enzyme levels and plant development

  • T. Reiß
  • R. Bergfeld
  • G. Link
  • W. Thien
  • H. Mohr
Article

Abstract

Mustard (Sinapis alba L.) seedlings were grown in the presence of herbicides (Difunon, Norflurazon) which inhibit carotenoid synthesis without affecting development, in darkness or in continuous far-red light. In strong white light (12,000 lx) the cotyledons of the herbicide-treated seedlings did not contain normal chloroplasts, but only small chlorophyll-free rudiments whose internal structure had almost disappeared. The plastid marker enzyme NADP-dependent glyceraldehyde-3-phosphate dehydrogenase was almost lacking. Plastid ribosomes and ribosomal RNAs were no longer detectable nor could synthesis of mature plastidal ribosomal RNAs be detected. Cytosolic ribosomes and rRNAs were not affected. Plastid DNA was apparently still intact as shown by restriction analysis. The appearance of marker enzymes of glyoxisomes, mitochondria and cytosol was not impaired while the level of marker enzymes of peroxisomes was drastically lowered. Accumulation of anthocyanin in mustard cotyledons was normal after a short, transient delay. Levels of representative enzymes of flavonoid biogenesis (phenylalanine ammonia-lyase, chalcone synthase) were somewhat increased rather than inhibited in the cotyledons of herbicide-treated, white-light-grown seedlings. The growth rate of hypocotyl and cotyledons was inhibited to the same extent in the herbicide-treated, white-light-grown seedling, although light inhibits growth of hypocotyls and promotes growth of cotyledons. Analysis of the data shows that photomorphogenesis of a herbicide-treated, white-light-grown seedling is normal, and is thus independent of plastid gene expression However, a ‘factor’ which coacts multiplicatively with phytochrome in determining the growth rate of the organs seems to originate from the plastids. Biogenesis of anthocyanin and synthesis of major enzymes of the flavonoid pathway are not affected adversely by a photooxidative elimination of plastid gene expression.

Key words

Chloroplast (photooxidative destruction) Herbicide (bleaching) Phenylalanine ammonia-lyase Photomorphogenesis Restriction analysis Sinapis 

Abbreviations

cFR

continuous far-red light

cWL

continuous white light

DF

Difunon

GPD

glyceraldehyde-3-phosphate dehydrogenase (GPD-NADP+, EC. 1.2.1.13; GPD-NAD+, EC 1.2.1.12)

NF

Norflurazon

ptDNA

plastid DNA

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajracharya, D., Schopfer, P. (1979) Effect of light on the development of glyoxysomal functions in the cotyledons of mustard (Sinapis alba L.) seedlings. Planta 145, 181–186Google Scholar
  2. Blume, D.E., McClure, J.W. (1980) Developmental effects of sandoz 6706 on activities of enzymes of phenolic and general metabolism in barley shoots grown in the dark or under low or high intensity light. Plant Physiol. 65, 238–244Google Scholar
  3. Brünning, K.H., Drumm, H., Mohr, H. (1975) On the role of phytochrome in controlling enzyme levels in plastids. Biochem. Physiol. Pflanz. 168, 144–156Google Scholar
  4. Cerff, R. (1973) Glyceraldehyde-3-phosphate dehydrogenases and glyoxylate reductase. I. Their regulation under continuous red and far-red light in the cotyledons of Sinapis alba L. Plant Physiol. 51, 76–81Google Scholar
  5. Cerff, R., Kloppstech, K. (1982) Structural diversity and differential light control of mRNAs coding for angiosperm glyceraldehyde-3-phosphate dehydrogenases. Proc. Natl. Acad. Sci. USA 79, 7624–7628Google Scholar
  6. Charriere-Ladreix, Y., Douce, R., Joyard, J. (1981) Characterization of 0-methyltransferase activities associated with spinach chloroplast fractions. FEBS Lett. 133, 55–58Google Scholar
  7. de Looze, S.M., Wagner, E. (1983) In vitro and in vivo regulation of chloroplast glyceraldehyde-3-phosphate dehydrogenase isozymes from Chenopodium rubrum. I. Purification and properties of isozymes. Physiol. Plant. 57, 231–237Google Scholar
  8. Dubbelman, T.M.A.R., Van Steveninck, A.L., Van Steveninck, J. (1982) Hematoporphyrin-induced photooxidation and photodynamic cross-linking of nucleic acids and their constituents. Biochim. Biophys. Acta 719, 47–52Google Scholar
  9. Ebel, J., Hahlbrock, K. (1982) Biosynthesis. In: The flavonoids: advances in research, pp. 641–679, Harborne, J.B., Marby, T.J., eds. Chapman and Hall, London New YorkGoogle Scholar
  10. Ellis, R.J. (1981) Chloroplast proteins: synthesis, transport, and assembly. Annu. Rev. Plant Physiol. 32, 111–137CrossRefGoogle Scholar
  11. Feierabend, J., Kemmerich, P. (1983) Mode of interference of chlorosis-inducing herbicides with peroxisomal enzyme activities. Physiol. Plant. 57, 346–351Google Scholar
  12. Feierabend, J., Schubert, B. (1978) Comparative investigation of the action of several chlorosis-inducing herbicides on the biogenesis of chloroplasts and leaf microbodies. Plant Physiol. 61, 1017–1022Google Scholar
  13. Feierabend, J., winkelhüsener, T. (1982) Nature of photooxidative events in leaves treated with chlorosis-inducing herbicides. Plant Physiol. 70, 1277–1282Google Scholar
  14. Frosch, S., Bergfeld, R., Mohr, H. (1976) Light control of plastogenesis and ribulosebisphosphate carboxylase levels in mustard seedling cotyledons. Planta 133, 53–56Google Scholar
  15. Frosch, S., Jabben, M., Bergfeld, R., Kleinig, H., Mohr, H. (1979) Inhibition of carotenoid biogenesis by the herbicide SAN 9789 and its consequences for the action of phytochrome on plastogenesis. Planta 145, 497–505Google Scholar
  16. Frosch, S., Mohr, H. (1980) Analysis of ligh-controlled accumulation of carotenoids in mustard (Sinapis alba L.) seedlings. Planta 148, 279–286Google Scholar
  17. Gupta, S., Acton, G.J. (1979) Purification to homogenity and some properties of L-phenylalanine ammonia-lyase of irradiated mustard (sinapis alba L.) cotyledons. Biochim. Biophys. Acta 570, 187–197PubMedGoogle Scholar
  18. Hock, B. (1973) Isoenzyme der Malat-Dehydrogenase aus Wassermelonen Keimlingen: Mikroheterogenität und deren Aufhebung bei der Samenkeimung. Planta 110, 329–344Google Scholar
  19. Hock, B., Mohr, H. (1965) Eine quantitative Analyse von Wachstumsvorgängen im Zusammenhang mit der Photomorphogenese von Senfkeimlingen (Sinapis alba L.). Planta 65, 1–16Google Scholar
  20. Kalthofen, H. (1981) Koaktionsanalyse — eine Methode zur Analyse des Zusammenwirkens zweier Einflußgrößen. Biol. Rundsch. 19, 155–173Google Scholar
  21. Kasemir, H., Mohr, H. (1982) Coaction of three factors controlling chlorophyll and anthocyanin synthesis. Planta 156, 282–288Google Scholar
  22. Kochar, V.M., Kochar, S., Mohr, H. (1981) An analysis of the action of light on betalain synthesis in the seedlings of Amaranthus caudatus, var. viridis. Planta 151, 81–87Google Scholar
  23. Knogge, W., Beulen, C., Weisenboeck, G. (1981) Distribution of phenylalanine ammonia-lyase and 4-coumarate: CoA ligase in oat primary leaf tissue. Z. Naturforsch. Teil C 36, 389–395Google Scholar
  24. Lange, H., Shropshire, W., Mohr, H. (1971) An analysis of phytochrome-mediated anthocyanin synthesis. Plant Physiol. 47, 649–655Google Scholar
  25. Link, G. (1981) Cloning and mapping of the chloroplast DNA sequences for two messenger RNAs from mustard (Sinapis alba L.). Nucleic Acids Res. 9, 3681–3694PubMedGoogle Scholar
  26. Link, G., Chambers, S.E., Thompson, J.A., Falk, H. (1981) Size and physical organization of chloroplast DNA from mustard (Sinapis alba L.). Mol. Gen. Genet. 181, 454–457Google Scholar
  27. Link, G., Coen, D.M., Bogorad, L. (1978) Differential expression of the gene for the large subunit of ribulosebisphosphate carboxylase in maize leaf cell types. Cell 15, 725–731CrossRefPubMedGoogle Scholar
  28. Mohr, H. (1959) Der Lichteinfluß auf das Wachstum der Keimblätter bei Sinapis alba L. Planta 53, 219–245Google Scholar
  29. Mohr, H. (1966) Untersuchungen zur phytochrominduzierten Photomorphogenese des Senfkeimlings (Sinapis alba L.). Z. Pflanzenphysiol. 54, 63–83Google Scholar
  30. Mohr, H. (1972) Lectures on Photomorphogenesis. Springer, Berlin Heidelberg New YorkGoogle Scholar
  31. Mohr, H. (1982) Phytochrome and gene expression. In: Trends in photobiology, pp. 515–530, Hélène, C., Charlier, M., Montenay-Garestier, Th., Laustriat, G., eds. Plenum Press, New York LondonGoogle Scholar
  32. Nishizawa, A.N., Wolosiuk, R.A., Buchanan, B.B. (1979) Chloroplast phenylalanine ammonia-lyase from spinach leaves Planta 145, 7–12Google Scholar
  33. Oelze-Karow, H., Rösch, H., Mohr, H. (1983) Prevention by phytochrome of photodelay in chlorophyll accumulation. Photochem. Photobiol. 37, 565–569Google Scholar
  34. Ohlrogge, J.B. (1982) Fatty acid synthetase: plants and bacteria have similar organization. Trends Biochem. Sci. 7, 386–387CrossRefGoogle Scholar
  35. Podstolski, A. (1981) Chloroplast-released inhibitor of phenylalanine ammonia lyase from barley (Hordeum vulgare) seedlings. Physiol. Plant. 52, 407–410Google Scholar
  36. Reiß, T. (1983) Wechselwirkungen zwischen Plastidenkompartiment und Cytoplasma bei der Photomorphogenese. Ph.D. thesis, University of FreiburgGoogle Scholar
  37. Saunders, J.A., McClure, J.W. (1975) Phytochrome controlled phenylalanine ammonia lyase in Hordeum vulgare plastids. Phytochemistry 14, 1285–1289CrossRefGoogle Scholar
  38. Sautter, C., Hock, B. (1982) Fluorescence immunohistochemical localization of malat dehydrogenase isoenzymes in watermelon cotyledons. Plant Physiol. 70, 1162–1168Google Scholar
  39. Schopfer, P. (1977) Phytochrome control of enzymes. Annu. Rev. Plant Physiol. 28, 223–252CrossRefGoogle Scholar
  40. Schopfer, P., Mohr, H. (1972) Phytochrome-mediated induction of phenylalanine ammonia-lyase in mustard seedlings. Plant Physiol. 49, 8–10Google Scholar
  41. Southern, E.M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517PubMedGoogle Scholar
  42. Stumpf, P.K. (1980) Biosynthesis of saturated and unsaturated fatty acids. In: The biochemistry of plants, vol. 4: Lipids: structure and function, pp. 177–204, Stumpf, P.K., Conn, E.E., eds. Academic Press, New York LondonGoogle Scholar
  43. Thien, W., Schopfer, P. (1982) Control by phytochrome of cytoplasmic precursor rRNA synthesis in the cotyledons of mustard seedlings. Plant Physiol. 69, 1156–1160Google Scholar
  44. Wagner, L., Bienger, J., Mohr, H. (1967) Die Steigerung der durch Phytochrom bewirkten Anthocyansynthese des Senfkeimlings (Sinapis alba L.) durch Chloramphenicol. Planta 75, 1–9Google Scholar
  45. Weissenboeck, G., Plesser, A., Trinks, K. (1976) Flavonoidgehalt und Enzymaktivitäten isolierter Haferchloroplasten (Avena sativa L.) Ber. Dtsch. Bot. Ges. 89, 457–472Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • T. Reiß
    • 1
  • R. Bergfeld
    • 1
  • G. Link
    • 1
  • W. Thien
    • 1
  • H. Mohr
    • 1
  1. 1.Biologisches Institut II der UniversitätFreiburgFederal Republic of Germany

Personalised recommendations