Advertisement

Archiv für Mikrobiologie

, Volume 87, Issue 4, pp 341–352 | Cite as

Tetrazolium reduction and nitrogenase activity in heterocystous blue-green algae

  • Peter Fay
  • S. A. Kulasooriya
Article

Summary

Heterocysts reduce triphenyl tetrazolium chloride (TTC) faster than vegetative cells apparently because the absence of the O2-evolving photosystem II and the high electron transport activity in these cells. Although the rate of TTC reduction in vegetative cells is increased by the continuous removal of O2 evolved in photosynthesis, it has not been possible to obtain rates of TTC reduction comparable with those in heterocysts probably because of the continued competition for electrons between TTC and O2. The use of nitro-blue tetrazolium chloride (NBT) as a redox indicator has revealed the presence in filaments under aerobic conditions of a gradient of electron transport activity with strongest reducing power in the heterocysts, proheterocysts and vegetative cells next to heterocysts, and with gradually diminishing activity midway between two heterocysts. This pattern is indistinct in filaments grown under micro-aerophilic conditions. The strong electron transport activity in vegetative cells adjacent to heterocysts appears to promote reducing conditions in the heterocysts. Both, red-formazan formation in the heterocysts and blue-formazan deposition in vegetative cells greatly inhibit nitrogenase activity, and this was adversely affected also by the detachment of heterocysts from vegetative cells. The findings are consistent with the idea that the association of heterocysts with vegetative cells in essential for nitrogen fixation to occur in heterocystous blue-green algae.

Keywords

Photosynthesis Vegetative Cell Nitrogen Fixation Triphenyl Tetrazolium Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi, A.: Electron microscopy of the structure and the site of succinate dehydrogenase in the blue-green algae. Biol. J. Nara Women's Univ. 17, 23–25 (1967).Google Scholar
  2. Allen, M. B., Arnon, D. I.: Studies on nitrogen-fixing blue-green algae. I. Growth and nitrogen fixation by Anabaena cylindrica Lemm. Plant Physiol. 30, 366–372 (1955).Google Scholar
  3. Barka, T., Anderson, P. J.: Histochemistry. New York-Evanston-London: Harper & Row Publ. Inc. 1965.Google Scholar
  4. Biggins, J.: Respiration in blue-green algae. J. Bact. 99, 570–575 (1969).PubMedGoogle Scholar
  5. Bisalputra, T., Brown, D. L., Weier, T. E.: Possible respiratory sites in a blue-green alga Nostoc sphaericum as demonstrated by potassium tellurite and tetranitroblue tetrazolium reduction. J. Ultrastruct. Res. 27, 182–197 (1969).Google Scholar
  6. Bradley, S., Carr, N. G.: The absence of a functional photosystem II in heterocysts of Anabaena cylindrica. J. gen. Microbiol. 68, xiii-xiv (1971).Google Scholar
  7. Donze, M., Haveman, J., Schiereck, P.: Absence of Photosystem 2 in heterocysts of the blue-green alga Anabaena. Biochim. biophys. Acta (Amst.) 256, 157–161 (1972).Google Scholar
  8. Drawert, H., Tischer, I.: Über Redox-Vorgänge bei Cyanophyceen unter besonderer Berücksichtigung der Heterocysten. Naturwissenschaften 43, 132 (1956).Google Scholar
  9. Drews, G.: Zur Frage der TTC-Reduktion durch Cyanophyceen. Naturwissenschaften 42, 646 (1955).Google Scholar
  10. Drews, G., Niklowitz, W.: Beiträge zur Cytologie der Blaualgen. III. Untersuchungen über die granulären Einschlüsse der Hormogonales. Arch. Mikrobiol. 25, 333–351 (1957).PubMedGoogle Scholar
  11. Fay, P.: Cell differentiation and pigment composition in Anabaena cylindrica. Arch. Mikrobiol. 67, 62–70 (1969).PubMedGoogle Scholar
  12. Fay, P., Cox, R. M.: Decarboxylation performed by particulate fractions of two nitrogen-fixing blue-green algae. Biochim. biophys. Acta (Amst.) 126, 402–404 (1966).Google Scholar
  13. Fay, P., Lang, N. J.: The heterocysts of blue-green algae I. Ultrastructural integrity after isolation. Proc. roy. Soc. B 178, 185–192 (1971).Google Scholar
  14. Fay, P., Stewart, W. D. P., Walsby, A. E., Fogg, G. E.: Is the heterocyst the site of nitrogen fixation in blue-green algae? Nature (Lond.) 220, 810–812 (1968).Google Scholar
  15. Fay, P., Walsby, A. E.: Metabolic activities of isolated heterocysts of the blue-green alga Anabaena cylindrica. Nature (Lond.) 209, 94–95 (1966).Google Scholar
  16. Horton, A. A.: NADH oxidase in blue-green algae. Biochem. biophys. Res. Comm. 32, 839–845 (1968).PubMedGoogle Scholar
  17. Kulasooriya, S. A., Lang, N. J., Fay, P.: The heterocysts of blue-green algae III. Differentiation and nitrogenase activity. Proc. roy. Soc. B 181, 199–209 (1972).Google Scholar
  18. Lang, N. J., Fay, P.: The heterocysts of blue-green algae II. Details of ultrastructure. Proc. roy. Soc. B 178, 193–203 (1971).Google Scholar
  19. Pearse, A. G. E.: Histochemistry. London: J. & A. Churchill Ltd. 1960.Google Scholar
  20. Rosenfeld, G.: Metabolic studies of intact perfused calf adrenals using tetrazolium. Arch. Biochem. Biophys. 62, 125–140 (1956).PubMedGoogle Scholar
  21. Stewart, W. D. P., Haystead, A., Pearson, H. W.: Nitrogenase activity in heterocysts of blue-green algae. Nature (Lond.) 224, 226–228 (1969).Google Scholar
  22. Thomas, J.: Absence of the pigments of photosystem II of photosynthesis in heterocysts of a blue-green alga. Nature (Lond.) 228, 181–183 (1970).Google Scholar
  23. Tischer, I.: Untersuchungen über die granulären Einschlüsse und das Reduktions-Oxydations-Vermögen der Cyanophyceen. Arch. Mikrobiol. 27, 400–428 (1957).PubMedGoogle Scholar
  24. Walsby, A. E.: A new culture flask. Biotechnol. Bioengng. 9, 443–447 (1967).Google Scholar
  25. Wolk, C. P., Wojciuch, E.: Photoreduction of acetylene by heterocysts. Planta (Berl.) 97, 126–134 (1971).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Peter Fay
    • 1
  • S. A. Kulasooriya
    • 1
  1. 1.Department of Botany, Westfield CollegeUniversity of LondonEngland

Personalised recommendations