Advertisement

Archiv für Mikrobiologie

, Volume 87, Issue 4, pp 303–322 | Cite as

Metabolism of glucose by unicellular blue-green algae

  • R. A. Pelroy
  • R. Rippka
  • R. Y. Stanier
Article

Summary

A facultative photo- and chemoheterotroph, the unicellular bluegreen alga Aphanocapsa 6714, dissimilates glucose with formation of CO2 as the only major product. A substantial fraction of the glucose consumed is assimilated and stored as polyglucose (probably glycogen). The oxidation of glucose proceeds through the pentose phosphate pathway. The first enzyme of this pathway, glucose-6-phosphate dehydrogenase, is partly inducible. In addition, the rate of glucose oxidation is controlled, at the level of glucose-6-phosphate dehydrogenase function, by the intracellular level of an intermediate of the Calvin cycle, ribulose-1,5-diphosphate, which is a specific allosteric inhibitor of this enzyme. As a consequence, the rate of glucose oxidation is greatly reduced by illumination, an effect reversed by the presence of DCMU, an inhibitor of photosystem II.

Two obligate photoautotrophs, Synechococcus 6301 and Aphanocapsa 6308, produce CO2 from glucose at extremely low rates, although their levels of pentose pathway enzymes and of hexokinase are similar to those in Aphanocapsa 6714. Failure to grow with glucose appears to reflect the absence of an effective glucose permease. A general hypothesis concerning the primary pathways of carbon metabolism in blue-green algae is presented.

Keywords

Diphosphate Pentose Pentose Phosphate Pathway Synechococcus Hexokinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

A (U)DPG

ADP-glucose or UDP-glucose

G-1-P

glucose-1-phosphate

G-6-P

glucose-6-phosphate

G(int.)

intracellular glucose

F-6-P

fructose-6-phosphate

6-PG

6-phosphogluconate

Ru-5-P

ribulose-5-phosphate

RUDP

ribulose-1,5-diphosphate

PGA

3-phosphoglycerate

GAP

glyceraldehyde-3-phosphate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benson, A. A., Bassham, J. A., Calvin, M., Goodale, T. C., Haas, V. A., Stepka, W.: The path of carbon in photosynthesis. V. Paper chromatography and radioautography of the products. J. Amer. chem. Soc. 72, 1710–1718 (1950).Google Scholar
  2. Biggins, J.: Respiration in blue-green algae. J. Bact. 99, 570–575 (1969).PubMedGoogle Scholar
  3. Bishop, N. I.: The influence of the herbicide, DCMU, on the oxygen-evolving system of photosynthesis. Biochim. biophys. Acta (Amst.) 27, 205–206 (1958).CrossRefGoogle Scholar
  4. Brown, A. H., Webster, G. C.: The influence of light on the respiration of the bluegreen alga Anabaena. Amer. J. Bot. 40, 753–758 (1953).Google Scholar
  5. Brown, A. T., Wittenberger, C. L.: Induction and regulation of a nicotinamide adenine dinucleotide-specific 6-phosphogluconate dehydrogenase in Streptococcus faecalis. J. Bact. 109, 106–115 (1972).PubMedGoogle Scholar
  6. Cheldelin, V. H.: Metabolic pathways in microorganisms. New York-London: John Wiley 1961.Google Scholar
  7. Cheung, W. Y., Gibbs, M.: Dark and photometabolism of sugars by a blue-green alga: Tolypothrix tenuis. Plant Physiol. 41, 451–462 (1965).Google Scholar
  8. Fredrick, J. F.: Evolution of polyglucoside-synthesizing isozymes in the algae. Ann. N.Y. Acad. Sci. 175, 524–530 (1970).Google Scholar
  9. Gibbs, M.: Enzymes of carbohydrate metabolism, pp. 411–415. In: S. P. Colowick and Nathan O. Kaplan, eds.: Methods in enzymology, vol. I. New York: Academic Press Inc. 1955.Google Scholar
  10. Hoare, D. S., Hoare, S. C., Moore, R. B.: The photoassimilation of organic compounds by autotrophic blue-green algae. J. gen. Microbiol. 49, 351–370 (1967).Google Scholar
  11. Hoch, G., Owens, O. H., Kok, B.: Photosynthesis and respiration. Arch. Biochem. 101, 171–180 (1963).PubMedGoogle Scholar
  12. Jones, L. W., Myers, J.: A common link between photosynthesis and respiration in blue-green algae. Nature (Lond.) 199, 670–672 (1963).Google Scholar
  13. Kaplan, N. O.: Symposium on multiple forms of enzymes and control mechanisms. I. Multiple forms of enzymes. Bact. Rev. 27, 155–169 (1963).Google Scholar
  14. Kersters, K., DeLey, J.: An easy screening assay for the enzymes of the Entner-Doudoroff pathway. Antonie v. Leeuwenhoek 34, 388–392 (1968).Google Scholar
  15. King, T. E., Cheldelin, V. H.: Multiple pathways of glucose oxidation in Acetobacter suboxydans. Biochem. J. 68, 31P (1958).Google Scholar
  16. Kornberg, A., Smyrniotis, P.Z.: Enzymes of carbohydrate metabolism, pp. 323–327. In: S. P. Colowick and Nathan O. Kaplan, eds.: Methods in enzymology, vol. I. New York: Academic Press Inc. 1955.Google Scholar
  17. Ling, Kuo-Huang, Byrne, W. L., Lardy, H.: Enzymes of carbohydrate metabolism, pp. 306–310. In: S. P. Colowick and Nathan O. Kaplan, eds.: Methods in enzymology, vol. I. New York: Academic Press Inc. 1955.Google Scholar
  18. McDonald, M. R.: Enzymes of carbohydrate metabolism, pp. 269–276. In: S. P. Colowick and Nathan O. Kaplan, eds.: Methods in enzymology, vol. I. New York: Academic Press Inc. 1955.Google Scholar
  19. Meloche, H. P., Wood, W. A.: Enzymes of carbohydrate metabolism, pp. 520–524. In: W. A. Wood, ed.: Methods in enzymology, vol. IX. New York: Academic Press Inc. 1966.Google Scholar
  20. Pearce, J., Carr, N. G.: The incorporation and metabolism of glucose by Anabaena variabilis. J. gen. Microbiol. 54, 451–462 (1969).Google Scholar
  21. Pearce, J., Leach, C. K., Carr, N. G.: The incomplete tricarboxylic acid cycle in the blue-green alga Anabaena variabilis. J. gen. Microbiol. 55, 371–378 (1969).PubMedGoogle Scholar
  22. Pelroy, R. A., Bassham, A. L.: Photosynthetic and dark carbon metabolism in unicellular blue-green algae. Arch. Mikrobiol. 86, 25–38 (1972).PubMedGoogle Scholar
  23. Pringsheim, E. G.: The Vitreoscillaceae: a family of colourless, gliding, filamentous organisms. J. gen. Microbiol. 5, 124–149 (1951).PubMedGoogle Scholar
  24. Rippka, R.: Photoheterotrophy and chemoheterotrophy among unicellular blue-green algae. Arch. Mikrobiol. (in press) (1972).Google Scholar
  25. Smith, A. J., London, J., Stanier, R. Y.: Biochemical basis of obligate autotrophy in blue-green algae and thiobacilli. J. Bact. 94, 972–983 (1967).PubMedGoogle Scholar
  26. Stanier, R. Y., Kunisawa, R., Mandel, M., Cohen-Bazire, G.: Purification and properties of unicellular blue-green algae (order Chroococcales). Bact. Rev. 35, 171–205 (1971).PubMedGoogle Scholar
  27. Taylor, J. F.: Enzymes of carbohydrates metabolism, pp. 310–315. In: S. P. Colowick and Nathan O. Kaplan, eds.: Methods in enzymology, vol. I. New York: Academic Press Inc. 1955.Google Scholar
  28. Trevelyan, W. E., Procter, D. P., Harrison, J. S.: Detection of sugars on paper chromatograms. Nature (Lond.) 166, 444–445 (1950).Google Scholar
  29. Wang, C. H., Stern, I., Gilmour, C. M., Klungsoyr, S., Reed, D. J., Baily, J. J., Christensen, B. E., Cheldelin, V. H.: Comparative study of glucose catabolism by the radiorespirometric method. J. Bact. 76, 207–216 (1958).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • R. A. Pelroy
    • 1
  • R. Rippka
    • 1
  • R. Y. Stanier
    • 1
  1. 1.Department of Bacteriology and ImmunologyUniversity of CaliforniaBerkeleyU.S.A.

Personalised recommendations