Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source

  • 242 Accesses

  • 119 Citations

Abstract

Two sulfate reducing bacteria (Madison and Marburg strains) that grew on H2 plus sulfate in a mineral salts medium that contained acetate and CO2 as sole carbon source were isolated from diverse environments. During growth in this medium 4.2 mol of H2 were consumed per mol of sulfate reduced to sulfide. Acetate was required for biosynthetic purposes only. Approximately 70% of the cell carbon synthesized was derived from acetate and 30% from CO2. Acetate was not involved in dissimilatory sulfate reduction.

Growth of the bacteria on H2 plus sulfate was linear rather than exponential, and a doubling time at the beginning of linear growth of approximately 3 h was observed. The optimal growth temperature was found to be near 35° C. Cultures could be grown up to a density of 500 mg cells (dry weight) per liter. Growth yield studies demonstrated that between 4 and 5 g of cells (dry weight) were formed per mol of sulfate reduced to sulfide.

The chemolithotrophically growing sulfate reducing isolates were identified as Desulfovibrio species by being obligately anaerobic, gram negative, non spore forming vibrios that contained desulfoviridin and cytochrome c3 (350–450 nmol/g protein). The organisms were found to be monopolarly and monotrichously flagellated. The abilities of the two strains to grow on electron donors other than H2 and to use electron acceptors other than sulfate differed considerably. The DNA base composition of the Madison and Marburg strains were 60 and 63.5 mol % GC, respectively. The taxonomic status of the strains was discussed.

This is a preview of subscription content, log in to check access.

References

  1. Alvarez, M., Barton, L.: Evidence for the presence of phosphoriboisomerase and ribulose-1,5-diphosphate carboxylase in extracts of Desulfovibrio vulgaris. J. Bacteriol. 131, 133–135 (1977)

  2. Andrew, I. G., Morris, J. G.: The biosynthesis of alanin by Clostridium kluyveri. Biochim. Biophys. Acta 97, 176–179 (1965)

  3. Bray, G. A.: A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Analyt. Biochem. 1, 279–285 (1960)

  4. Bryant, M. P., Tzeng, S. F., Robinson, I. M., Joyner, A. E.: Nutrient requirements of methanogenic bacteria. Adv. in Chemistry Series 105, 23–40 (1971)

  5. Campbell, L. L., Postgate, J. R.: Classification of the spore-forming sulfate-reducing bacteria. Bacteriol. Rev. 29, 359–363 (1965)

  6. Daniels, L., Zeikus, J. G.: Improved culture flask for obligate anaerobes. Appl. Microbiol. 29, 710–711 (1975)

  7. DeLey, J.: Reexamination of the association between melting point, buoyant density and the chemical base composition of deoxyribonucleic acid. J. Bacteriol. 101, 738–754 (1970)

  8. Hungate, R. E.: A roll tube method for cultivation of strict anaerobes. In: Methods in microbiology, Vol. 3B (J. R. Norris, D. W. Ribbons, eds.), pp. 117–132. London-New York: Academic Press 1969

  9. Khosrovi, B., MacPherson, R., Miller, J. D. A.: Some observations on growth and hydrogen uptake by Desulfovibrio vulgaris. Arch. Microbiol. 80, 324–337 (1971)

  10. Kröger, A.: The electron transport-coupled phosphorylation of the anaerobic bacterium Vibrio succinogenes. In: Electron transfer chains and oxidative phosphorylation (E. Quagliariello, S. Papa, F. Palmieri, E. C. Slater, N. Siliprandi, eds.), pp. 265–270. Amsterdam-Oxford: North-Holland; New York: American Elsevier 1975

  11. Kröger, A.: Phosphorylative electron transport with fumarate and nitrate as terminal hydrogen acceptors. In: Microbial energetics (B. A. Haddock, W. A. Hamilton, eds.), pp. 61–93. London-New York-Melbourne: Cambridge University Press 1977

  12. Kyryacos, G., Boord, C. E.: Separation of hydrogen, oxygen, nitrogen, methane and carbon monoxide by gas adsorption chromatography. Anal. Chem. 29, 787–788 (1957)

  13. LeGall, J., Postgate, J. R.: The physiology of sulphate-reducing bacteria. Adv. in Microbial. Physiol. 10, 81–133 (1973)

  14. Marmur, J.: A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3, 208–218 (1961)

  15. Mechalas, B. J., Rittenberg, S. C.: Energy coupling in Desulfovibrio desulphuricans. J. Bacteriol. 80, 501–507 (1960)

  16. Mink, R. W., Dugan, P. R.: Tentative identification of methanogenic bacteria by fluorescence microscopy. Appl. Microbiol. 33, 713–717 (1977)

  17. Murphy, M. J., Siegel, M. L., Kamin, H., Der Vartanian, D. V., Lee, J., LeGall, J., Peck, H. D., Jr.: An iron tetrahydroporphyrin prosthetic group common to both assimilatory and dissimilatory sulfite reductases. Biochem. Biophys. Res. Commun. 54, 82–88 (1973)

  18. Peck, H. D.: The ATP-dependent reduction of sulfate with hydrogen in extracts of Desulfovibrio desulfuricans. Proc. Natl. Acad. Sci. U.S.A. 45, 701–708 (1959)

  19. Peck, H. D., Jr.: The role of adenosine-5′-phosphosulfate in the reduction of sulfate to sulfite by Desulfovibrio desulfuricans. J. Biol. Chem. 237, 198–203 (1962)

  20. Peck, H. D., Jr.: Phosphorylation coupled with electron transfer in extracts of the sulfate-reducing bacterium Desulfovibrio gigas. Biochem. Biophys. Res. Commun. 22, 112–118 (1966)

  21. Pfennig, N., Biebl, H.: Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing acetate-oxidizing bacterium. Arch. Microbiol. 110, 3–12 (1976)

  22. Postgate, J. R.: On the autotrophy of Desulfovibrio desulphuricans. Z. Allgem. Mikrobiol. 1, 53–56 (1960)

  23. Postgate, J. R.: Media for sulphur bacteria: some amendments. Lab. Practice 18, 286 (1969)

  24. Postgate, J. R., Campbell, L. L.: Classification of Desulfovibrio species, the nonsporulating sulfate-reducing bacteria. Bacteriol. Rev. 30, 732–738 (1966)

  25. Senez, J. C.: Some considerations on the energetics of bacterial growth. Bacteriol. Rev. 26, 95–107 (1962)

  26. Sorokin, Yu. I.: Sources of energy and carbon for biosynthesis in sulfate-reducing bacterin. Microbiology (USSR) (Engl. Transl.) 35, 643–647 (1966a)

  27. Sorokin, Yu. I.: Investigations of the structural metabolism of sulfate-reducing bacteria with 14C. Microbiology (USSR) (Engl. Transl.) 35, 806–814 (1966b)

  28. Sorokin, Yu. I.: Role of carbon dioxide and acetate in the biosynthesis by sulphate-reducing bacteria. Nature 210, 551–552 (1966c)

  29. Stouthamer, A. H.: A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie van Leeuwenhoek. J. Microbiol. Serol. 39, 545–565 (1973)

  30. Stouthamer, A. H., Bettenhausen, C.: Utilization of energy for growth and maintenance in continuous and batch cultures of microorganisms. Biochim. Biophys. Acta 301, 53–70 (1973)

  31. Szarkowaka, L., Klingenberg, M.: On the role of ubiquinone in mitochondria (spectrophotometric and chemical measurements of its redox reactions). Biochem. Z. 338, 674–697 (1963)

  32. Tabatabi, M. A.: Determination of sulfate in water samples. Sulphur. Inst. I 10, 11–13 (1974)

  33. Thauer, R. K., Jungermann, K., Decker, K.: Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41, 100–180 (1977)

  34. Thauer, R. K., Jungermann, K., Henninger, H., Wenning, J., Decker, K.: The energy metabolism of Clostridium kluyveri. Eur. J. Biochem. 4, 173–180 (1968)

  35. Thauer, R. K., Rupprecht, E., Jungermann, K.: The synthesis of one-carbon units from CO2 via a new ferredoxin dependent monocarboxylic acid cycle. FEBS Lett 8, 304–307 (1970)

  36. Tomlinson, N., Barker, H. A.: Carbon dioxide and acetate utilisation by Clostridium kluyveri. I. Influence of nutritional conditions on utilisation patterns. J. Biol. Chem. 209, 585–595 (1954)

  37. Vosjan, J. H.: ATP generation by electron transport in Desulfovibrio desulfuricans. Antonie van Leuwenhoek. J. Microbiol. Serol. 36, 584–586 (1970)

  38. Vosjan, J. H.: Respiration and fermentation of the sulphate-reducing bacterium Desulfovibrio desulfuricans in a continuous culture. Plant and Soil 43, 141–152 (1975)

  39. Widdel, F., Pfennig, N.: A new anaerobic sporing acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum acetoxidans. Arch. Microbiol. 112, 119–122 (1977)

  40. Yagi, T., Maruyama, K.: Purification and properties of cytochrome c3 of Desulfovibrio vulgaris, Miyazaki. Biochim. Biophys. Acta 243, 214–224 (1971)

  41. Zeikus, J. G., Bowen, V. G.: Fine structure of Methanospirillum hungatti. J. Bacteriol. 121, 373–380 (1975)

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Badziong, W., Thauer, R.K. & Zeikus, J.G. Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Arch. Microbiol. 116, 41–49 (1978). https://doi.org/10.1007/BF00408732

Download citation

Key words

  • Desulfovibrio
  • Chemolithotrophic growth
  • H2-Oxidation
  • Sulfate-reduction
  • Growth yields
  • Cell carbon synthesis
  • Acetate assimilation
  • Desulfoviridin
  • Cytochrome c3