Advertisement

Diabetologia

, Volume 37, Issue 4, pp 344–350 | Cite as

A novel radioligand binding assay to determine diagnostic accuracy of isoform-specific glutamic acid decarboxylase antibodies in childhood IDDM

  • C. E. Grubin
  • T. Daniels
  • B. Toivola
  • M. Landin-Olsson
  • W. A. Hagopian
  • L. Li
  • A. E. Karlsen
  • E. Boel
  • B. Michelsen
  • Å. Lernmark
Originals

Summary

Insulin-dependent diabetes mellitus (IDDM) is associated with autoreactivity against GAD but the diagnostic sensitivity (positivity in disease) and specificity (negativity in health) of isoform-specific GAD antibodies have yet to be defined in assay systems suitable for screening large number of samples. One set of IDDM patient (n=10) and control (n=50) standard sera were used to develop quantitative antibody assays with in vitro synthesized recombinant 35S-methionine-labelled GAD65 and GAD67, respectively, and protein A-Sepharose to separate free from antibody-bound ligand. Binding levels were not normally distributed (p<0.0001) and therefore, the diagnostic accuracy of GAD antibodies was analysed by the ROC plots in population-based, consecutively-diagnosed, recent onset, 0–14 year-old patients (n=105), and matched, healthy control subjects (n=157). The ROC plots showed that the diagnostic sensitivity of GAD65 antibodies was 77% and the specificity 92% compared with 8% and 98%, respectively for GAD67 antibodies. In the IDDM sera, GAD65 and GAD67 antibodies were concordant in 7% (6 of 81) and GAD65 antibodies and ICA in 89% (72 of 81) without a correlation between the autoantibody levels. Autoantibodies to recombinant human islet GAD65 are specific and sensitive markers for childhood IDDM in this immunoassay with in vitro synthesized 35S-methioninelabelled recombinant GAD.

Key words

Glutamic acid decarboxylase receiver-operating characteristic plot diagnostic accuracy islet cell antibodies autoimmunity diabetes mellitus 

Abbreviations

IDDM

insulin-dependent diabetes mellitus

GAD

glutamic acid decarboxylase

ROC

receiver-operating characteristic

ICA

islet cell antibodies

JDF

Juvenile Diabetes Foundation

References

  1. 1.
    Lernmark Å, Baekkeskov S (1981) Islet cell antibodies-theoretical and practical implications. Diabetologia 21: 431–435Google Scholar
  2. 2.
    Baekkeskov S, Nielsen JH, Marner B, Bilde T, Ludvigsson J, Lernmark Å (1982) Autoantibodies in newly diagnosed diabetic children immunoprecipitate human pancreatic islet cell proteins. Nature 298: 167–169Google Scholar
  3. 3.
    Christie M, Landin-Olsson M, Sundkvist G, Dahlquist G, Lernmark Å, Baekkeskov S (1988) Antibodies to a Mr 64,000 islet cell protein in Swedish children with newly diagnosed type 1 (insulin-dependent) diabetes. Diabetologia 31: 597–602Google Scholar
  4. 4.
    Baekkeskov S, Landin-Olsson M, Kristensen JK et al. (1987) Antibodies to a Mr 64,000 human islet cell antigen precede the clinical onset of insulin-dependent diabetes. J Clin Invest 79: 926–934Google Scholar
  5. 5.
    Atkinson MA, Maclaren NK, Scharp DW, Lacy PE, Riley WJ (1990) 64,000 Mr autoantibodies as predictors of insulin-dependent diabetes. Lancet 335: 1357–1360Google Scholar
  6. 6.
    Baekkeskov S, Aanstoot HJ, Christgau S et al. (1990) Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase 347: 151–156Google Scholar
  7. 7.
    Karlsen AE, Hagopian WA, Grubin CE et al. (1991) Cloning and primary structure of a human islet isoform of glutamic acid decarboxylase from chromosome 10. Proc Natl Acad Sci USA 88: 8337–8341Google Scholar
  8. 8.
    Bu D-F, Erlander MG, Hitz BC et al. (1992) Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene. Proc Natl Acad Sci USA 89: 2115–2119Google Scholar
  9. 9.
    Sparkes RS, Kaufman DL, Heinzmann C, Tobin AJ, Mohandas T (1987) Brain glutamate decarboxylase (GAD) gene assigned to human chromosome 2 by somatic cell hybrid analysis. Cytogenet Cell Genet 46: 696Google Scholar
  10. 10.
    Michelsen BK, Petersen JS, Boel E, Møldrup A, Dyrberg T, Madsen OD (1991) Cloning, characterization, and autoimmune recognition of rat islet glutamic acid decarboxylase in insulin-dependent mellitus. Proc Natl Acad Sci USA 88: 8754–8758Google Scholar
  11. 11.
    Karlsen AE, Michaelsen BK, Pedersen JK et al. (1992) Glutamic acid decarboxylase: an autoantigen in insulin-dependent diabetes mellitus. Diabetes Nutr Metab 5: 97–103Google Scholar
  12. 12.
    Hagopian WA, Michelsen B, Karlsen AE et al. (1993) Auto-antibodies in IDDM primarily recognize the 65,000-Mr rather than the 67,000-Mr isoform of glutamic acid decarboxylase. Diabetes 42: 631–636Google Scholar
  13. 13.
    Kaufman DJ, Erlander MG, Clare-Salzer M, Atkinson MA, Maclaren NK, Tobin AJ (1992) Autoimmunity to two forms of glutamate decarboxylase in insulin-dependent diabetes mellitus. J Clin Invest 89: 283–292Google Scholar
  14. 14.
    Petersen JB, Russel S, Marshall MO et al. (1993) Differential expression of glutamic acid decarboxylase in rat and human islets. Diabetes 42: 484–495Google Scholar
  15. 15.
    Rowley MJ, Mackay JR, Chen Q-Y, Knowles WJ, Zimmet PZ (1992) Antibodies to glutamic acid decarboxylase discriminate major types of diabetes mellitus. Diabetes 41: 548–551Google Scholar
  16. 16.
    De Aizpurua HJ, Harrison LC, Cram DS (1992) An ELISA for antibodies to recombinant glutamic acid decarboxylase in IDDM. Diabetes 41: 1182–1187Google Scholar
  17. 17.
    Atkinson M, Kaufman D, Newman D, Tobin A, Maclaren N (1993) Islet cell cytoplasmic autoantibody reactivity to glutamate decarboxylase in insulin-dependent diabetes. J Clin Invest 91: 350–356Google Scholar
  18. 18.
    Velloso LA, Kämpe O, Hallberg A, Christmanson L, Betsholtz C, Karlsson FA (1993) Demonstration of GAD-65 as the main immunogenic isoform of glutamate decarboxylase in type 1 diabetes and determination of autoantibodies using a radioligand produced by eukaryotic expression. J Clin Invest 91: 2084–2090Google Scholar
  19. 19.
    Martino G, Tappaz M, Braghi S et al. (1991) Autoantibodies to glutamic acid decarboxylase (GAD) detected by an immunotrapping enzyme activity assay: relation to insulin dependent diabetes mellitus and islet cell antibodies. J Autoimmunity 4: 915–923Google Scholar
  20. 20.
    Seissler J, Amann J, Mauch L et al. (1993) Prevalence of autoantibodies to the 65- and 67-kD isoforms of glutamate decarboxylase in insulin-dependent diabetes mellitus. J Clin Invest 92: 1394–1399Google Scholar
  21. 21.
    Karlsen AE, Hagopian WA, Petersen JS et al. (1992) Recombinant glutamic acid decarboxylase representing a single isoform expressed in human islets detects IDDM association 65K autoantibodies. Diabetes 41: 1355–1359Google Scholar
  22. 22.
    Yang KL, Tobin MJ (1991) A prospective study of indexes redicting the outcome of trials of weaning from mechanical ventilation. N Engl J Med 324: 1145–1450Google Scholar
  23. 23.
    Metz CE (1978) Basic principle of ROC analysis. Semin Nucl Med 8: 283–298Google Scholar
  24. 24.
    Christou NV, Tellado-Rodriguez J, Chartrand L et al. (1989) Estimating mortality risk in preoperative patients using immunologic, nutritional, and acute-phase response variables. Ann Surg 210: 69–77Google Scholar
  25. 25.
    Zweig M, Campbell G (1993) Receiver-operating characteristics (ROC) plots: a fundamental tool in clinical medicine. Clin Chem 39: 561–577Google Scholar
  26. 26.
    Ludvigsson J, Heding L, Liedén G, Marner B, Lernmark Å (1983) Plasmapheresis in the initial treatment of insulin-dependent diabetes mellitus in children. BMJ 286: 176–178Google Scholar
  27. 27.
    Marner B, Lernmark Å, Ludvigsson J et al. (1985) Islet cell antibodies in insulin-dependent (type 1) diabetic children treated with plasmapheresis. Diabetes Res 2: 231–236Google Scholar
  28. 28.
    Bonifacio E, Dawkins RL, Lernmark Å (1987) Immunology and diabetes workshops: report of the second international workshop on the standardization of cytoplasmic islet cell antibodies. Diabetologia 30: 273Google Scholar
  29. 29.
    Bottazzo GF, Gleichmann H (1986) Immunology and diabetes workshops: report of the first international workshop on the standardisation of cytoplasmic islet cell antibodies. Diabetologia 29: 125–126Google Scholar
  30. 30.
    Landin-Olsson M, Sundkvist G, Lernmark Å (1987) Prolonged incubation in the two-colour immunofluorescence test increases the prevalence and titres of islet cell antibodies in type 1 (insulin-dependent) diabetes mellitus. Diabetologia 30: 327–332Google Scholar
  31. 31.
    Landin-Olsson M, Karlsson A, Dahlquist G, Blom L, Lernmark Å, Sundkvist G (1989) Islet cell and other organ-specific autoantibodies in all children developing type 1 (insulindependent) diabetes mellitus in Sweden during one year and in matched controls. Diabetologia 32: 387–395Google Scholar
  32. 32.
    Dahlquist G, Blom L, Tuvemo T, Nyström L, Sandström A, Wall S (1989) The Swedish childhood diabetes study — results from a nine year case register and one year case-referent study indicating that type 1 (insulin-dependent) diabetes mellitus is associated with both type 2 (non-insulin-dependent) diabetes mellitus and autoimmune disorders. Diabetologia 32: 2–6Google Scholar
  33. 33.
    Gottlieb DI, Chang Y-C, Schwob JE (1986) Monoclonal antibodies to glutamic acid decarboxylase. Proc Natl Acad Sci USA 83: 8808–8812Google Scholar
  34. 34.
    Bonifacio E, Lernmark Å, Dawkins RL (1988) Serum exchange and use of dilutions have improved precision of measurement of islet cell antibodies. J Immunol Methods 106: 83–88Google Scholar
  35. 35.
    Lernmark Å, Molenaar JL, van Beers WAM et al. (1991) The Fourth International Serum Exchange Workshop to standardize cytoplasmic islet cell antibodies. Diabetologia 34: 534–535Google Scholar
  36. 36.
    Erlander MG, Tillakaratne NJK, Feldblum S, Patel N, Tobin AJ (1991) Two genes encode distinct glutamate decarboxylase. Neuron 7: 91–100Google Scholar
  37. 37.
    Hagopian WA, Karlsen AE, Gottsäter A et al. (1993) Quantitative assay using recombinant human islet glutamic acid decarboxylase (GAD65) shows 64K autoantibody positivity at onset predicts diabetes type. J Clin Invest 91: 368–374Google Scholar
  38. 38.
    Christgau S, Schierbeck H, Aanstoot H-J et al. (1991) Pancreatic β cells express two autoantigenic forms of glutamic acid decarboxylase, a 65-kDa hydrophilic form and a 64-kDa amphiphilic form which can be both membrane-bound and soluble. J Biol Chem 286: 21257–21264Google Scholar
  39. 39.
    Landin-Olsson M, Palmer JP, Lernmark Å et al. (1992) Predictive value of islet cell and insulin autoantibodies for type 1 (insulin-dependent) diabetes mellitus in a population-based study of newly diagnosed diabetic and matched control children. Diabetologia 35: 1068–1073Google Scholar
  40. 40.
    Bärmeier H, McCulloch DK, Neifing JL et al. (1991) Risk for developing type 1 (insulin-dependent) diabetes mellitus and the presence of islet 64K antibodies. Diabetologia 34: 727–733Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • C. E. Grubin
    • 1
  • T. Daniels
    • 1
  • B. Toivola
    • 2
  • M. Landin-Olsson
    • 3
  • W. A. Hagopian
    • 1
  • L. Li
    • 1
  • A. E. Karlsen
    • 4
  • E. Boel
    • 5
  • B. Michelsen
    • 4
  • Å. Lernmark
    • 1
    • 6
  1. 1.Department of MedicineUniversity of WashingtonSeattleUSA
  2. 2.Department of Laboratory MedicineUniversity of WashingtonSeattleUSA
  3. 3.Department of MedicineUniversity of LundLundSweden
  4. 4.Hagedorn Research InstituteGentofteDenmark
  5. 5.Novo Nordisk A/SBagsvaerdDenmark
  6. 6.Karolinska Institute, Department of EndocrinologyKarolinska Hospital, L1:02StockholmSweden

Personalised recommendations