Archives of Microbiology

, Volume 139, Issue 4, pp 388–396 | Cite as

Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov.

  • Bernhard Möller
  • Rolf Oßmer
  • Bernard H. Howard
  • Gerhard Gottschalk
  • Hans Hippe
Original Papers

Abstract

A new genus of strictly anaerobic, gram-negative, banana-shaped bacteria is described. Cells formed spores and were motile by means of up to 15 laterally inserted flagella. Nitrate or sulfate were not used as electron acceptor. Organic substrates that were fermented included N-methyl compounds, such as betaine, N,N-dimethylglycine and sarcosine, primary alcohols, hydroxy fatty acids, and 2,3-butanediol. In addition, molecular hydrogen and carbon dioxide were fermented to acetate. The latter was the characteristic fermentation product in general. During growth on betaine, trimethylamine was formed in addition. The degradation of N,N-dimethylglycine yielded acetate, monomethylamine, and trimethylamine. The presence of cytochrome b and of ubiquinone in the cells was shown. The deoxyribonuleic acid base composition of the strains was between 41.3 and 47.4 mol% guanine plus cytosine. The name Sporomusa is proposed for this new genus. On the basis of the DNA-DNA homology values obtained, the shape of the spores and some other properties, the isolated strains were assigned to two species. Names proposed: Sporomusa sphaeroides and Sporomusa ovata. The type species is S. sphaeroides and the type strains are strain E, DSM 2875 (S. sphaeroides) and strain H1, DSM 2662 (S. ovata).

Key words

Sporomusa sphaeroides Sporomusa ovata Spore formation N-methyl compounds Degradation of betaine and N,N-dimethylglycine Acetogenic anaerobes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bahl H, Andersch W, Braun K, Gottschalk G (1982) Effect of pH and butyrate concentration on production of acetone and butanol by Clostridium acetobutylicum grown in continuous culture. Eur J Appl Microbiol Biotechnol 14:17–20Google Scholar
  2. Bartholomew JW (1962) Variables influencing results, and the precise definition of steps in the gram staining as a means of standardizing the results obtained. Stain Technol 37:139–155PubMedGoogle Scholar
  3. Behn W, Arnold CG (1974) Die Wirkung von Streptomycin und Neamin auf die Chloroplasten-und Mitochondrienstruktur von Chlamydomonas reinhardii. Protoplasma 82:77–89PubMedGoogle Scholar
  4. Braun M, Mayer F, Gottschalk G (1981) Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch Microbiol 128:288–293PubMedGoogle Scholar
  5. Bryant MP (1972) Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr 25:1324–1328PubMedGoogle Scholar
  6. Bryant MP (1974) Genus Selenomonas. In: Buchanan RE, Gibbons NE (eds) Bergey's manual of determinative bacteriology, 8th edn. The Williams & Wilkins Co. Baltimore, pp 424–426Google Scholar
  7. Cerny G (1978) Studies on the aminopeptidase test for the distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:113–122Google Scholar
  8. Claus D, Fahmy F, Rolf HJ, Tosunoglu N (1983) Sporosarcina halophila sp. nov., an obligate, slightly halophilic bacterium from salt marsh soils. System Appl Microbiol 4:496–506Google Scholar
  9. Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354PubMedGoogle Scholar
  10. Collins CH, Lyne PM (1976) Microbiological methods. 4th edn. Butterworths, LondonGoogle Scholar
  11. De Ley J (1970) Reexamination of the association between melting point, buoyant density and chemical base composition of deoxyribonucleic acid. J Bact 101:738–754PubMedGoogle Scholar
  12. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142PubMedGoogle Scholar
  13. De Vries W, Van Wijck-Kapteijn WMC, Oosterhuis SKH (1974) The presence and function of cytochromes in Selenonomas ruminantium, Anaerovibrio lipolytica and Veillonella alcalescens. J Gen Microbiol 81:69–78PubMedGoogle Scholar
  14. Eneroth P, Lindstedt G (1965) Thin layer chromatography of betaines and other compounds related to carnitine. Anal Biochem 10:479–485Google Scholar
  15. Fiebig K, Gottschalk G (1982) Methanogenesis from choline by a coculture of Desulfovibrio sp. and Methanosarcina barkeri. Appl Environ Microbiol 45:161–168Google Scholar
  16. Gregersen T (1978) Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127Google Scholar
  17. Hippe H, Caspari D, Fiebig K, Gottschalk G (1979) Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri. Proc Natl Acad Sci USA 76:494–498PubMedGoogle Scholar
  18. Holdemann LV, Cato EP, Moore WEC (1977) Anaerobe laboratory manual, 4th edn. Anaerobe Laboratory, Virginia Polytechnic Institute and State University, Blacksburg, VirginiaGoogle Scholar
  19. Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 3 b. Academic Press, New York London, pp 117–132Google Scholar
  20. Ingraham VM (1953) The identification of peptide end groups as dimethylamino-acids. J Biol Chem 202:193–201PubMedGoogle Scholar
  21. Kamio Y, Kim KC, Takahashi H (1972) Characterization of lipid A, a component of lipopolysaccharides from Selenomonas ruminantium. Agr Biol Chem 36:2425–2432Google Scholar
  22. Kingsley VV, Hoeninger JFM (1973) Growth, structure and classification of Selenomonas. Bacteriol Rev 37:479–521PubMedGoogle Scholar
  23. Koransky JR, Allen SD, Dowell VR Jr (1978) Use of ethanol for selective isolation of sporeforming microorganisms. Appl Environ Microbiol 35:762–765PubMedGoogle Scholar
  24. Kroppenstedt RM (1982) Anwendung chromatographischer HP-Verfahren (HPTLC und HPLC) in der Bakterien-Taxonomie. GIT-Labor-Medizin 5:266–275Google Scholar
  25. Kühn W, Gottschalk G (1983) Characterization of the cytochromes occuring in Methanosarcina species. Eur J Biochem 135:89–94PubMedGoogle Scholar
  26. Lai C-H, Males BM, Dougherty PA, Berthold P, Listgarten MA (1983) Centipeda periodontii gen. nov., sp. nov. from human periodontal lesions. Int J Syst Bacteriol 33:628–635Google Scholar
  27. Lee SY, Mabee MS, Jangaard NO (1978) Pectinatus, a new genus of the family Bacteroidaceae. Int J Syst Bacteriol 28:582–594Google Scholar
  28. Mandel M, Marmur J (1968) Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. In: Grossman L, Moldare K (eds) Methods of enzymology, vol XIII, part B. Academic Press, New York, pp 195–206Google Scholar
  29. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218Google Scholar
  30. Müller E, Fahlbusch K, Walther R, Gottschalk (1981) Formation of N,N-dimethylglycine, acetic acid and butyric acid from betaine by Eubacterium limosum. Appl Environ Microbiol 42:439–445Google Scholar
  31. Naumann E, Hippe H, Gottschalk G (1983) Betaine: new oxidant in the Stickland reaction and methanogenesis from betaine and l-alanine by a Clostridium sporogenes—Methanosarcina barkeri coculture. Appl Environ Microbiol 45:474–483Google Scholar
  32. Naumann E, Fahlbush K, Gottschalk G (1984) Presence of a trimethylamine: HS-coenzyme M methyltransferase in Methanosarcina barkeri. Arch Microbiol (in press)Google Scholar
  33. Postgate JR (1963) Versatile medium for the enumeration of sulfate reducing bacteria. Appl Microbiol 11:265–267PubMedGoogle Scholar
  34. Robinson IM, Ritchie AE (1981) Emendation of Acetivibrio and description of Acetivibrio ethanolgignens, a new species from the colons of pigs with dysentery. Int J Syst Bacteriol 31:333–338Google Scholar
  35. Spurr AR (1969) A low viscosity epoxy resin medium for electron microscopy. J Ultrastruc Res 26:31–43Google Scholar
  36. Stanton TB, Savage DC (1983) Roseburia cecicola gen. nov., sp. nov., a motile, obligately anaerobic bacterium from a mouse cecum. Int J Syst Bacteriol 33:618–627Google Scholar
  37. Valentine RC, Shapiro BM, Stadtman ER (1968) Regulation of glutamine synthetase. XIII. Electron microscopy of the enzyme from Escherichia coli. Biochemistry 7:2143–2152PubMedGoogle Scholar
  38. Venable JH, Coggeshall RA (1965) A simplified lead citrate stain for use in electron microscopy. J Cell Biol 25:407–408CrossRefPubMedGoogle Scholar
  39. Widdel F, Kohring G-W, Mayer F (1983) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134:286–294Google Scholar
  40. Wiegel J, Braun M, Gottschalk G (1981) Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide. Curr Microbiol 5:255–260Google Scholar
  41. Wolin EA, Wolfe RS, Wolin MJ (1964) Viologen dye inhibition of methane formation by Methanobacillus omelianskii. J Bacteriol 87:993–998PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Bernhard Möller
    • 1
  • Rolf Oßmer
    • 2
  • Bernard H. Howard
    • 3
  • Gerhard Gottschalk
    • 2
  • Hans Hippe
    • 1
  1. 1.Deutsche Sammlung von Mikroorganismen der Gesellschaft für Biotechnologische Forschung mbHGöttingenFederal Republic of Germany
  2. 2.Institut für Mikrobiologie der UniversitätGöttingenFederal Republic of Germany
  3. 3.Department of BiochemistryLincoln CollegeCanterburyNew Zealand

Personalised recommendations