Archives of Microbiology

, Volume 150, Issue 4, pp 394–399 | Cite as

Evidence for urea cycle activity in Sporosarcina ureae

  • Stephen E. Gruninger
  • Manuel Goldman
Original Papers


Sporosarcina ureae BS 860, a motile, sporeforming coccus, possesses the enzymes required for a functioning urea (ornithine) cycle. This is only the second known example of urea cycle activity in a prokaryote. Specific activities are reported for ornithine carbamoyltransferase, argininosuccinase, arginase, and urease. Although argininosuccinate synthetase activity could not be detected directly in crude cell extracts, indirect evidence from radiocarbon tracing data for arginine synthesis from the substrate, l-[1-14C]-ornithine, strongly suggest the presence of this or other similar enzyme activity. Furthermore, good growth in defined media containing either 1.0% glutamine, ornithine, or citrulline as sole carbon sources suggests argininosuccinate synthetase activity is necessary for arginine synthesis. The effect of varying pH on arginase and urease activities indicate that these two enzymes may function within the context of the urea cycle to generate ammonia for amino acid synthesis, as well as for raising the pH of the growth micro-environment.

Key words

Sporosarcina ureae Urea cycle Ornithine cycle Arginase Urease 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Archibald RM (1944) Determination of citrulline and allantoin and demonstration of citrullin in blood plasma. J Biol Chem 156:121–142Google Scholar
  2. Beijerinck MW (1901) Anhäufungsversuche mit Ureumbakterien. Ureumspaltung durch Urease und durch Katabolismus. Centr Bakteriol Parasitenk Abt II, 7:33–61Google Scholar
  3. Gibson T (1935) An investigation of Sarcina ureae, a spore-forming, motile coccus. Arch Mikrobiol 6:73–78Google Scholar
  4. Gibson T (1974) In: Buchanan RE, Gibbons NE (eds) Bergey's manual of determinative bacteriology, 8th edn. Williams & Wilkins Co, Baltimore, pp 573–574Google Scholar
  5. Haworth C, Heathcote JG (1969) An improved technique for the analysis of amino acids and related compounds on thin layers of cellulose. Part I. Qualitative separation. J Chromatog 41:380–385Google Scholar
  6. Hiort U, Kating H (1966) Untersuchungen zum Stoffwechsel des Harnstoffs bei Mikroorganismen. IV. Adaptive Ureasebildung bei Micrococcus denitrificans Beij. Arch Mikrobiol 54:177–183Google Scholar
  7. Hiort U, Kleczkowski K, Kating H (1967) Untersuchungen zum Stoffwechsel des Harnstoffs in Mikroorganismen. VI. Die spezifischen Aktivitäten der Enzyme des Ornithin-Cyclus in Micrococcus denitrificans Beij. Arch Mikrobiol 55:311–319PubMedGoogle Scholar
  8. Kaltwasser H, Kramer J, Conger WR (1972) Control of urease formation in certain aerobic bacteria. Arch Mikrobiol 81: 178–196PubMedGoogle Scholar
  9. Kharamov VA, Kharats KS (1969) The arginase activity of Escherichia coli. Zt Mikrobiol Epidemiol Immunobiol 69: 120–123Google Scholar
  10. Lowry OH, Rosenbrough NF, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:256–275Google Scholar
  11. MacDonald RE, MacDonald SW (1962) The physiology and natural relationships of the motile, sporeforming sarcinae. Can J Microbiol 8:795–808Google Scholar
  12. Macpherson HT (1942) Modified procedures for the colorimetric estimation of arginine and histidine. Biochem J 39:59–63Google Scholar
  13. Mahmoud SAZ, Taha SM, Salem SH, El-Fouly MZ (1979) Factors affecting the activity of urea decomposing bacteria. Egypt J Microbiol 14:1–10Google Scholar
  14. Mannarelli BM (1977) The biochemical characteristics and taxonomic relationship of Sporosarcina ureae. M.S. Thesis. University of Illinois at Chicago, Chicago, ILGoogle Scholar
  15. Moore RB, Kauffman NJ (1970) Simultaneous determination of citrulline and urea using diacetylmonoxime. Analyt Biochem 33:263–272PubMedGoogle Scholar
  16. Oginsky EL (1957) Isolation and determination of arginine and citrulline. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 3. Academic Press, New York, p 639Google Scholar
  17. Pel'ttser AS (1969) Isolation of the enzyme urease from the surrounding medium by the urobacteria Sarcina ureae. Isz Timiryazev Sel'skokhoz Akad 3:230–231Google Scholar
  18. Ramaley RF, Bernlohr RW (1965) Apparent induction of ornithine transcarbamylase and arginase by arginine in Bacillus licheniformis. J Mol Biol 11:842–844PubMedGoogle Scholar
  19. Ratner S, Petrack B, Rochovansky O (1953a) Biosynthesis of urea. V. Isolation and properties of argininosuccinic acid. J Biol Chem 204:95–113PubMedGoogle Scholar
  20. Ratner S, Anslow Jr WP, Petrack B (1953b) Biosynthesis of urea. VI. Enzymatic cleavage of argininosuccinic acid to arginine and fumaric acid. J Biol Chem 204:115–125PubMedGoogle Scholar
  21. Ringold R, Spotts CR (1979) Nitrogen metabolism in Sporosarcine ureae. Abstr Ann Meeting Am Soc Microbiol, p 166Google Scholar
  22. Schneider J, Kaltwasser H (1984) Urease from Arthrobacter oxydans, a nickel-containing enzyme. Arch Microbiol 139: 355–360Google Scholar
  23. Schuegraf A, Warner R, Ratner S (1960) Free energy changes of the argininosuccinate synthetase reaction and of the hydrolysis of the inner pyrophosphate bond of ATP. J Biol Chem 235:3597–3602PubMedGoogle Scholar
  24. Soru E (1965) Purification of bacterial arginase. J Chromatog 20:325–333CrossRefGoogle Scholar
  25. Thompson ED, Nakata HM (1971) Reduction of activity of reduced nicotinamide adenine dinucleotide oxidase by divalent cations in cell-free extracts of Bacillus cereus T. J Bacteriol 105:494PubMedGoogle Scholar
  26. Van Slyke DD, Dillon RT, Mac Fadyen DA, Hamilton P (1941) Gasometric determination of carboxyl groups in free amino acids. J Biol Chem 141:627–669Google Scholar
  27. Vogel HJ, Bacon DF, Baich A (1963) Induction of acetylornithine γ-transaminase during pathway-wide repression. In: Vogel HJ, Bryson V, Lampen JO (eds) Informational macromolecules. Academic Press, New York, pp 293–300Google Scholar
  28. Wiley WR, Stokes JL (1963) Effect of pH and ammonium ions on the permeability of Bacillus pasteurii. J Bacteriol 86:1152–1156PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Stephen E. Gruninger
    • 1
  • Manuel Goldman
    • 1
  1. 1.Department of Biological SciencesUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations