Archiv für Mikrobiologie

, Volume 77, Issue 1, pp 1–11 | Cite as

Agar-diffusion assay of cellulolytic ability of thermophilic fungi

  • Michael R. Tansey
Article

Summary

The relative ability of species of thermophilic fungi to degrade cellulose was measured using an agar-diffusion technique based on the clearing of acid-swollen cellulose.

  1. 1.

    Chaetomium thermophile var. coprophile Cooney and Emerson, C. thermophile var. dissitum Cooney and Emerson, Sporotrichum thermophile Apinis, Sporotrichum sp., Talaromyces emersonii Stolk, and Thermoascus aurantiacus Miehe sensu Apinis (1967) formed a zone of clearing with a clearly defined front.

     
  2. 2.

    Humicola grisea var. thermoidea Cooney and Emerson, H. insolens Cooney and Emerson, Malbranchea pulchella var. sulfurea (Miehe) Cooney and Emerson, Myriococcum albomyces Cooney and Emerson, Stilbella thermophila Fergus, and Torula thermophila Cooney and Emerson produced distinct clearing, but the zonal front was not sharp enough for precise measurement.

     
  3. 3.

    Dactylomyces crustaceus CBS, Humicola lanuginosa (Griffon and Maublanc) Bunce, H. stellata Bunce, Mucor miehei Cooney and Emerson, M. pusillus Lindt, Talaromyces thermophilus Stolk, and Thermoascus aurantiacus Miehe sensu Cooney and Emerson (1964) did not clear acid-swollen cellulose.

     
  4. 4.

    Cellulolytic rates of several of the thermophilic species, tested at 45° C, were 2–3 times those of the mesophilic species Chaetomium globosum Kunze ex Fries and Trichoderma viride Persoon ex Fries, tested at 25°C.

     

Abbreviations used

CMC

carboxymethyl cellulose

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apinis, A. E.: Occurrence of thermophilous microfungi in certain alluvial soils near Nottingham. Nova Hedwigia 5, 57–78 (1963).Google Scholar
  2. —: Dactylomyces and Thermoascus. Trans. Brit. Mycol. Soc. 50, 573–582 (1967).Google Scholar
  3. Buston, H. W., Moss, M. O., Tyrrell, D.: The influence of carbon dioxide on growth and sporulation of Chaetomium globosum. Trans. Brit. mycol. Soc. 49, 387–396 (1966).Google Scholar
  4. Chang, Y.: The fungi of wheat straw compost. II. Biochemical and physiological studies. Trans. Brit. mycol. Soc. 50, 667–677 (1967).Google Scholar
  5. —, Hudson, J. J.: The fungi of wheat straw compost. I. Ecological studies. Trans. Brit. mycol. Soc. 50, 649–666 (1967).Google Scholar
  6. Cooney, D. G., Emerson, R.: Thermophilic fungi. An account of their biology, activities, and classification, pp. 188. San Francisco: W. H. Freeman and Company 1964.Google Scholar
  7. Craveri, R., Craveri, A., Guicciardi, A.: Ricerche sulle proprietà ed attività di eumiceti thermofili isolati dal terreno. Ann. Microbiol. (Milano) 17, 1–30 (1967).Google Scholar
  8. Eggins, H. O. W., Malik, K. A.: The occurrence of thermophilic cellulolytic fungi in a pasture land soil. Antonie v. Leeuwenhoek 35, 178–184 (1969).Google Scholar
  9. Fergus, C. L.: Thermophilic and thermotolerant molds and actinomycetes of mushroom compost during peak heating. Mycologia (N. Y.) 56, 267–284 (1964).Google Scholar
  10. —: The cellulolytic activity of thermophilic fungi and actinomycetes. Mycologia (N. Y.) 61, 120–129 (1969).Google Scholar
  11. Flannigan, B.: Microflora of dried barley grain. Trans. Brit. mycol. Soc. 53, 371–379 (1969).Google Scholar
  12. Henssen, A.: Über die Bedeutung der thermophilen Mikroorganismen für die Zersetzung des Stallmistes. Arch. Mikrobiol. 27, 63–81 (1957).PubMedGoogle Scholar
  13. Khasanov, O., Mirkhodzhaev, M.: The influence of various nitrogen sources on degradation of cellulose by thermophilic micromycetes. Uzbesksii Biol. Zh. 1969 (2), 13–15.Google Scholar
  14. Mandels, M., Weber, J.: The production of cellulases. Advanc. Chem. 95, 391–414 (1969).Google Scholar
  15. Mulinge, S. K., Apinis, A. E.: Occurrence of thermophilous fungi in stored moist barley grain. Trans. Brit. mycol. Soc. 53, 361–370 (1969).Google Scholar
  16. Rautela, G. S., Cowling, E. B.: Simple cultural test for relative cellulolytic activity of fungi. Appl. Microbiol. 14, 892–898 (1966).Google Scholar
  17. Reagan, R. W., Jeris, J. S.: A review of the decomposition of cellulose and refuse. Compost Sci. 11, 17–20 (1970); Addendum, 11, 32 (1970).Google Scholar
  18. Rész, A.: Untersuchungen über den Mikroorganismenbesatz von belüftetem Heu. Zbl. Bakt., II. Abt. 122, 597–634 (1968).Google Scholar
  19. Rothbaum, H. P.: Spontaneous combustion of hay. J. appl. Chem. 13, 291–302 (1963).Google Scholar
  20. Shields, J. K., Unligil, H. H.: Deterioration of softwood chips owing to outside storage in New Brunswick. Pulp Paper Mag. Can. 69 (21), 62–67 (1968).Google Scholar
  21. Smith, G.: Some new and interesting species of micro-fungi. Trans. Brit. mycol. Soc. 40, 481–488 (1957).Google Scholar
  22. Somkuti, G. A., Babel, F. J., Somkuti, A. C.: Cellulolysis by Mucor pusillus. Appl. Microbiol. 17, 888–892 (1969).PubMedGoogle Scholar
  23. Stutzenberger, F. J., Kaufman, A. J., Lossin, R. D.: Cellulolytic activity in municipal solid waste composting. Canad. J. Microbiol. 16, 553–560 (1970).Google Scholar
  24. Tansey, M. R.: Isolation of thermophilic fungi from self-heated, industrial wood chip piles. Mycologia (N. Y.) (in press).Google Scholar
  25. Taylor, J. J.: Further clarification of Sporotrichum species. Mycologia (N. Y.) 62, 797–825 (1970).Google Scholar
  26. Walseth, C. S.: Occurrence of cellulases in enzyme preparations from microorganisms. Tappi 35, 228–233 (1952).Google Scholar
  27. Wood, T. M.: The relationship between cellulolytic and pseudo-cellulolytic microorganisms. Biochim. biophys. Acta (Amst.) 192, 531–534 (1969).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Michael R. Tansey
    • 1
    • 2
  1. 1.Department of BotanyUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of MicrobiologyIndiana UniversityBloomingtonUSA

Personalised recommendations