Advertisement

Archives of Microbiology

, Volume 132, Issue 3, pp 266–269 | Cite as

Catabolism of 5-hydroxyisoflavones by fungi of the genus Fusarium

  • Ulrike Willeke
  • Wolfgang Barz
Original Papers

Abstract

Fusarium oxysporum f. sp. pisi and F. solani f. sp. cucurbitae degrade the isoflavone biochanin A (I) along the sequence: l→dihydrobiochanin A→3-(p-methoxyphenyl)-4,6-diketo-5,6-dihydro-4H-pyran →3,4-dihydroxyphenylacetic acid. F. oxysporum f. sp. apii, F. moniliforme, F. aquaeductum and F. solani f. sp. phaseoli first O-demethylate I to genistein, whichisdegraded to dihydrogenistein →3-(p-hydroxyphenyl)-4,6-diketo-5,6-dihydro-4H-pyran →3,4-dihydroxyphenylacetic acid. The significance of these alternative homologous catabolic routes are discussed.

Key words

Isoflavones Degradation Fusarium Fungi γ-Pyrone 3,4-Dihydroxyphenylacetic acid O-Demethylation 

Abbreviations

TLC

Thin layer chromatography

NMR

Nuclear magnetic resonance

HPLC

High performance liquid chromatography

UV

ultraviolet

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barz W (1971) Über den Abbau aromatischer Verbindungen durch Fusarium oxysporum schlecht. Arch Microbiol 78:341–352Google Scholar
  2. Barz W, Schlepphorst R, Laimer J (1976) Über den Abbau von Polyphenolen durch Pilze der Gattung Fusarium. Phytochemistry 15:87–90Google Scholar
  3. Barz W, Hösel W (1979) Metabolism and degradation of phenolic compounds in plants. Rec Adv Phytochem 12:339–369Google Scholar
  4. Barz W, Willeke U, Weltring KM (1980) Microbial degradation of phytoalexins and related compounds. Ann Phytopathol 12:435–452Google Scholar
  5. Brewer D, Arsenault GP, Wright JLC, Vinurg LC (1973) Production of bikaverin by Fusarium oxysporum and its identity with lycopersin J Antibiotics 26:778–781Google Scholar
  6. Ferm R, Nilsson, AC (1969) Microbiological degradation of a commercial lignosulfonate. Sv Papperstichn 72:531–536Google Scholar
  7. Fletcher CC, Kaufman DD (1979) Hydroxylation of Monochloroaniline Pesticide Residues by Fusarium oxysporum schlecht. J Agr Food Chem 27:1127–1130Google Scholar
  8. Flippin RS, Smith C, Mickelson MN (1964) Fusarium growth supported by hydrocarbons. Appl Microbiol 12:93–95PubMedGoogle Scholar
  9. Fonken GS, Johnson RA (1972) Chemical Oxidations with Microorganisms, Marcel Dekker Inc., New YorkGoogle Scholar
  10. Fuchs A, De Vries FW, Platero Sanz M (1980) The mechanism of pisatin degradation by Fusarium oxysporum f. sp. pisi. Physiol. Plant Pathol 16:119–133Google Scholar
  11. Harper DB (1977) Fungal degradation of aromatic nitriles. Enymology of C-N cleavage by Fusarium solani. Biochem J 167:685–692PubMedGoogle Scholar
  12. Henderson MEK (1965) Enrichment in soil of fungi which utilize aromatic compounds, Plant and Soil 23:3–21Google Scholar
  13. Jeffrey AM, Jerina DM, Self R, Evans WC (1972) The bacterial degradation of flavonoids. Oxidative fission of the A-ring of dihydrogossypetin by a Pseudomonas sp. Biochem J 130:383–390PubMedGoogle Scholar
  14. Kajama Y, Nakatsubo F, Higuchi T, Iwahara S (1981) Degradation of d,1-syringaresinol, a β-β′ linked lignin model compound, by Fusarium solani M-13-1. Arch Microbiol 129:305–309Google Scholar
  15. Katayama T, Nakatsubo F, Higuchi T (1980) Initial reactions in the fungal degradation of guaiacylglycerol-β-coniferyl ether, a lignin substructure model. Arch Microbiol 126:127–132Google Scholar
  16. Kieslich K (1976) Microbial Transformations of Non-steroid cyclic compounds. Thieme, StuttgartGoogle Scholar
  17. Kuhn PJ, Smith DA (1980) Enzymic modification of kievitone and phaseollidin by Fusarium solani s. sp. phaseoli. Ann Phytopathol 12:453–456Google Scholar
  18. Mabry TJ, Markham KR, Thomas MB (1970) The systematic identification of flavonoids, Springer, Berlin Heidelberg New YorkGoogle Scholar
  19. Thiele H, Rehm HI (1979) Formation and splitting of esters in subterminal oxidation of dodecane by Fusarium lini. Eur J Appl Microbiol Biotechnol 6:361–369Google Scholar
  20. VanEtten HD, Matthews PS, Tegtmeier KJ, Dietert MF, Stein JI (1980) The association of pisatin tolerance and demethylation with virulence on pea in Nectria haematococca. Physiol Plant Pathol 16:257–268Google Scholar
  21. VanEtten HD, Barz W (1981) Expression of Pisatin demethylating ability in Nectria haematococca. Arch Microbiol 129:56–60Google Scholar
  22. Weltring KM, Barz W, Dewick PM (1981) Degradation of 3,9-dimethoxy-pterocarpan and medicarpin by Fusarium fungi. Arch Microbiol 130:381–384Google Scholar
  23. Weltring KM, Mackenbrock K, Barz W (1982) Demethylation, Methylation and 3′-Hydroxilation of Isoflavones by Fusarium fungi. Z Naturforsch (in press)Google Scholar
  24. Willeke U (1981) Abbau von Isoflavonen durch Pilze der Gattung Fusarium. Doctoral thesis, University of Münster, GermanyGoogle Scholar
  25. Willeke U, Barz W (1982) Degradation of the isoflavone biochanin A by Fusarium javanicum. Z Naturforsch (in press)Google Scholar
  26. Willeke U, Weltring KM, Barz W, VanEtten HD (1982) Degradation of the preinfectional inhibitor biochanin A by isolates of Fusarium solani f. sp. pisi. Phytochemistry (in press)Google Scholar
  27. Wong E (1975) The Isoflavonoids. In: Harborne JB, Mabry TI (eds) The Flavonoids. Chapman and Hall, London, pp 743–800Google Scholar
  28. Zaichenko OM, Koval EZ (1966) Oxidation of some alkanes by Fusarium moniliforme. Sheld Mikrobiol Zh 28:17–24Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Ulrike Willeke
    • 1
  • Wolfgang Barz
    • 1
  1. 1.Lehrstuhl für Biochemie der PflanzenWestfälische Wilhelms-UniversitätMünsterFederal Republic of Germany

Personalised recommendations