Archives of Microbiology

, Volume 150, Issue 3, pp 244–248 | Cite as

Disproving the hypothesis of a common ancestry for the Ochromonas danica chrysoplast and Heliobacterium chlorum

  • D. Witt
  • E. Stackebrandt
Original Papers


The phylogenetic position of the golden-yellow alga Ochromonas danica chrysoplast was investigated by comparison of the 16S rRNA catalogue and two long 16S rRNA stretches (804 and 454 bases) with catalogues from eubacteria and chloroplasts and with homologoes 16S rRNA regions from Escherichia coli, Bacillus subtilis, Heliobacterium chlorum, Anacystis nidulans and chloroplasts from Zea mays, Nicotiana tabacum, Euglena gracilis and Chlamydomonas reinhardii, respectively. Both approaches indicate a closer relationship of the chrysoplast to chloroplasts and cyanobacteria than to the brownish photoheterotrophic Heliobacterium chlorum for which a common ancestry has recently been hypothesized.

Key words

Origin of plastids Endosymbiosis Chrysophytes (Ochromonas danicaHeliobacterium chlorum 16S rRNA oligonucleotide cataloguing Reverse transcriptase sequencing Phylogenetic relations (Molecular phylogeny) Chloroplast evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bonen L, Doolittle WF (1975) On the prokaryotic nature of red algal chloroplasts. Proc Natl Acad Sci USA 72: 2310–2314Google Scholar
  2. Bonen L, Doolitle WF (1976) Partial sequences of 16S rRNA and the phylogeny of blue-green algae and chloroplasts. Nature 261: 669–673Google Scholar
  3. Bonen L, Doolitle WF, Fox GE (1979) Cyanobacterial evolution: results of 16S ribosomal ribonucleic acid sequence analysis. Can J Biochem 57: 879–888Google Scholar
  4. Brockmann H, Lipinsky A (1983) Bacteriochlorophyll g. A new bacteriochlorophyll from Heliobacterium chlorum. Arch Microbiol 136: 17–19Google Scholar
  5. Brosius J, Palmer JL, Kennedy JP, Noller HF (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75: 4801–4805Google Scholar
  6. Dron M, Rahire M, Rochaix D (1982) Sequence of the chloroplast-16S rRNA gene and its surrounding regions of Chlamydomonas reinhardii. Nucl Acids Res 10: 7609–7620Google Scholar
  7. Embley M, Smida J, Stackebrandt E (1988) Reverse transcriptase sequencing of 16S ribosomal RNA from Faenia rectivirgula, Pseudonocardia thermophila and Saccharopolyspora hirsuta. J Gen Microbiol 134: 961–966Google Scholar
  8. Faminitzin A (1907) Die Symbiose als Mittel der Synthese von Organismen. Biol Zbl 27: 353–364Google Scholar
  9. Felsenstein J (1982) Numerical methods for inferring evolutionary trees. Q Rev Biol 57: 379–404Google Scholar
  10. Fitch WM, Margoliash E (1967) Construction of phylogenetic trees: a method based on mutation distances as estimated from cytochrome C sequences is of general applicability. Science 155: 279–284Google Scholar
  11. Fox GE, Pechman KR, Woese CR (1977) Comparative cataloguing of 16S ribosomal ribonucleic acid: molecular approach to prokaryotic systematics. Int J Syst Bacteriol 27: 44–57Google Scholar
  12. Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner R, Magrum L, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR (1980) The phylogeny of prokaryotes. Science 209: 457–463Google Scholar
  13. Gest H, Favinger JC (1983) Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a “new” form of bacteriochlorophyll. Arch Microbiol 136: 11–16Google Scholar
  14. Graf L, Roux E, Stutz E, Kössel H (1982) Nucleotide sequence of a Euglena gracilis chloroplast gene coding for the 16S rRNA: homologies to E. coli and Zea mays chloroplast 16S rRNA. Nucl Acids Res 10: 6369–6381Google Scholar
  15. Gray M (1983) The bacterial ancestry of plastids and mitochondria. Bioscience 33: 693–699Google Scholar
  16. Gray M, Doolittle F (1982) Has the endosymbiont hypothesis been proven? Microbiol Rev 46: 1–42Google Scholar
  17. Hori H (1975) Evolution of 5S RNA. J Mol Evol 7: 75–86Google Scholar
  18. Hori H, Osawa S (1979) Evolutionary change in 5S RNA secondary structure and a phylogenetic tree of 54 5S rRNA species. Proc Natl Acad Sci USA 76: 381–385Google Scholar
  19. Krupp G, Gross HJ (1983) Sequence analysis of in vitro P32-labeled RNA. In: Agris PF, Kopper A (eds) The modified nucleosides of transfer RNA, II. Alan R Liss, Inc, New York, pp 11–48Google Scholar
  20. Lane DJ, Pace G, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequence for phylogenetic analysis. Proc Natl Acad Sci USA 82: 6955–6959Google Scholar
  21. Margulis L (1968) Evolutionary criteria in thallophytes: a radical alternative. Science 161: 1020–1022Google Scholar
  22. Margulis L, Obar R (1985) Heliobacterium and origin of chrysoplasts. Biosystems 17: 317–325Google Scholar
  23. Mereschkowsky C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Zbl 25: 593–604Google Scholar
  24. Michalski TJ, Hunt JE, Bowman MK, Smith U, Bardeen K, Gest H, Norris JR, Katz JJ (1987) Bacteriopheophytin g: Properties and some speculations on a possible primary role for bacteriochlorophylls b and g in the biosynthesis of chlorophylls. Proc Natl Acad Sci USA 84: 2570–2574Google Scholar
  25. Phillips DO, Carr NG (1975) Hybridization of prokaryotic and eukaryotic 5S rRNA to Euglena gracilis chloroplast DNA. FEBS Lett 60: 94–97Google Scholar
  26. Queen C, Korn LJ (1984) A comprehensive sequence analysis program for the IBM personal computer. Nucl Acids Res 12: 581–599Google Scholar
  27. Schwartz RM, Dayhoff MO (1978) Origins of prokaryotes, mitochondria and chloroplasts. Science 199: 395–403Google Scholar
  28. Schwarz A, Kössel H (1980) The primary structure of 16S rRNA from Zea mays chloroplast is homologous to E. coli 16S rRNA. Nature 283: 739–742Google Scholar
  29. Seewaldt E, Stackebrandt E (1982) Partial sequence of 16S ribosomal RNA and the phylogeny of Prochloron. Nature 295: 618–620Google Scholar
  30. Sogin ML, Elwood HJ, Gunderson JH (1986) Evolutionary diversity of eukaryotic small-subunit rRNA genes. Proc Natl Acad Sci USA 83: 1383–1387Google Scholar
  31. Stackebrandt E (1983) A phylogenetic analysis of Prochloron. Endocytobiology Vol II: 921–932Google Scholar
  32. Stackebrandt E, Woese CR (1981) The evolution of prokaryotes. In: Carlile MJ, Collins JR, Moseley BEB (eds) Molecular and cellular aspects of microbial evolution. Cambridge University Press, Cambridge, pp 1–31Google Scholar
  33. Stackebrandt E, Ludwig W, Fox GE (1985) 16SrRNA oligonucleotide cataloguing. In: Gottschalk G (ed) Methods in microbiology, vol 18. Academic Press, London, pp 7–107Google Scholar
  34. Stewart GC, Bott KF (1983) DNA sequence of the tandem ribosomal RNA promoter for B. subtilis operon rrn B. Nucl Acids Res 11: 6289–6300Google Scholar
  35. Stöcklein L (1983) Phylogenetische Untersuchungen an Eukaryonten mit Hilfe der vergleichenden Analyse der 18S rRNA. pHD Thesis, Technical University, Munich, FRGGoogle Scholar
  36. Tohdoh N, Sugiura M (1982) The complete nucleotide sequence of a 16S ribosomal RNA gene from tobacco chloroblasts. Gene 17: 213–218Google Scholar
  37. Tomoika N, Sugiura M (1983) The complete nucleotide sequence of a 16S ribosomal RNA gene from a blue-green alga Anacystis nidulans. Mol Gen Genet 191: 46–50Google Scholar
  38. Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271Google Scholar
  39. Woese CR, Debrunner-Vossbrinck B, Oyaizu H, Stackebrandt E, Ludwig W (1985a) Gram-positive bacteria: possible photosynthetic ancestry. Science 229: 762–765Google Scholar
  40. Woese CR, Stackebrandt E, Ludwig W (1985b) What are mycoplasmas: the relationship of tempo and mode in bacterial evolution. J Mol Evol 21: 305–316Google Scholar
  41. Zablen LB, Kissel MS, Woese CR, Buetow DE (1975) Phylogenetic origin of the chloroplast and procaryotic nature of its ribosomal RNA. Proc Natl Acad Sci USA 72: 2418–2422Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • D. Witt
    • 1
  • E. Stackebrandt
    • 1
  1. 1.Institut für Allgemeine MikrobiologieChristian-Albrechts-UniversitätKielFederal Republic of Germany

Personalised recommendations