, Volume 161, Issue 6, pp 519–524 | Cite as

Turnover and transport of quinolizidine alkaloids. Diurnal fluctuations of lupanine in the phloem sap, leaves and fruits of Lupinus albus L.

  • Michael Wink
  • Ludger Witte


Quinolizidine alkaloids formed in the leaves of Lupinus albus L. are translocated via the phloem to the other plant organs, especially the maturing fruits. Compared with amino-acid transport in the phloem, the alkaloids contribute about 8% to the overall nitrogen being exported from the leaf. Since it is likely that the alkaloids are subsequently degraded in the target tissues a minor role of quinolizidine alkaloids might be nitrogen transport. A marked diurnal fluctuation of alkaloids was observed in the leaves, the phloem sap, the roots and the fruits with an increase during the day and an amplitude of several hundred percent thus providing evidence for a rapid turnover of endogenous alkaloids.

Key words

Alkaloid turnover Lupinus (alkaloids) Nitrogen transport Phloem (alkaloid transport) 



quinolizidine alkaloids


gas-liquid chromatography


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bauer, A., Urquhart, A.A., Joy, K.W. (1977) Amino acid metabolism of pea leaves. Diurnal changes and amino acid synthesis from N-nitrate. Plant Physiol 59, 915–919Google Scholar
  2. Beevers, L. (1976) Nitrogen metabolism in plants. Arnold, LondonGoogle Scholar
  3. Bünning, E. (1963) Die physiologische Uhr. Zeitmessung in Organismen mit ungefähr tagesperiodischen Schwankungen. Springer, Berlin HeidelbergGoogle Scholar
  4. Czapek, F. (1921) Biochemie der Pflanzen. Fischer, JenaGoogle Scholar
  5. Flück, H. (1963) Intrinsic and extrinsic factors affecting the production of secondary plant products. In: Chemical plant taxonomy, pp. 167–186, Swain, T.L., ed. Academic Press, London New YorkGoogle Scholar
  6. Fraenkel, G. (1959) The raison d'être of secondary substances. Science 129, 1466PubMedGoogle Scholar
  7. Harborne, J.B. (1977) Chemosystematics and coevolution. Pure Appl. Chem. 49, 1403–1421Google Scholar
  8. Harborne, J.B. (1982) Introduction to ecological biochemistry. Academic Press, London New YorkGoogle Scholar
  9. Hillman, W.S. (1976) Biological rhythms and physiological timing. Annu. Rev. Plant Physiol. 27, 159–179CrossRefGoogle Scholar
  10. Jakubke, H.D., Jeschkeit, H. (1981) Lexikon Biochemie, 2nd edn. Verlag Chemie WeinheimGoogle Scholar
  11. James, W.O. (1950) Alkaloids in plants. In: The alkaloids, vol. 1, pp. 15–90, Manske, R.H.F., Holmes, H.L., eds. Academic Press, London New YorkGoogle Scholar
  12. Levin, D.A. (1976) The chemical defenses of plants to pathogens and herbivores. Annu. Rev. Ecol. Syst. 7, 121–159CrossRefGoogle Scholar
  13. Mann, J. (1980) Secondary metabolism Clarendon Press, OxfordGoogle Scholar
  14. Mears, J.A., Mabry, T.J. (1971) Alkaloids in Leguminosae. In: Chemotaxonomy of the Leguminosae, pp. 73–178, Harborne, JB., Boulter, D., Turner, B.L., eds. Academic Press, London New YorkGoogle Scholar
  15. Miflin, B.J., Lea, P.J. (1977) Amino acid metabolism. Annu. Rev. Plant Physiol. 28, 299–329CrossRefGoogle Scholar
  16. Molisch, H. (1923) Mikrochemie der Pflanze. Fischer, JenaGoogle Scholar
  17. Mothes, K. (1954) Alkaloids in plants. In The alkaloids, vol. 4, pp. 1–29, Manske, R.H.F., Holmes, H.L., eds. Academic Press, London New YorkGoogle Scholar
  18. Mothes, K. (1955) Physiology of alkaloids. Annu. Rev. Plant Physiol. 6, 393–432CrossRefGoogle Scholar
  19. Paech, K. (1950) Biochemie und Physiologie der sekundären Pflanzenstoffe. Springer, Berlin HeidelbergGoogle Scholar
  20. Pate, J.S. (1980) Transport and partioning of nitrogenous solutes. Annu. Rev. Plant Physiol. 31, 313–340Google Scholar
  21. Pate, J.S., Sharkey, P.J., Lewis, O.A.M. (1974) Phloem bleeding from legume fruits. A technique for study of fruit nutrition. Planta 120, 229–243Google Scholar
  22. Queiroz, O. (1974) Circadian rhythms and metabolic patterns. Annu. Rev. Plant. Physiol. 25, 115–134CrossRefGoogle Scholar
  23. Reifer, I. (1963) Die Biosynthese der Alkaloide in Lupinus angustifolius. Abh. Dtsch. Akad. Wiss. Berlin, Kl. Chem., Geol., Biol. 4, 121–130Google Scholar
  24. Robinson, T. (1974) Metabolism and function of alkaloids in plants. Science 184, 430–435Google Scholar
  25. Rosenthal, G.A., Janzen, D.H. (1979) Herbivores. Their interaction with secondary plant metabolites. Academic Press, New York LondonGoogle Scholar
  26. Schütte, H.R. (1969) Chinolizidinalkaloide. In: Biosynthese der Alkaloide, p. 168, Mothes, K., Schütte, H.R., eds. VEB-Verlag, BerlinGoogle Scholar
  27. Schütte, H.R. (1982) Secondary plant substances. Simple amines, pyrrolizidine and quinolizidine. Prog. Bot. 44, 165–181Google Scholar
  28. Swain, T. (1977) Secondary compounds as protective agents. Annu. Rev. Plant Physiol. 28, 479–501Google Scholar
  29. von Denffer, D. (1983) Morphologie. In: Lehrbuch für Botanik, 32nd edn., p. 74, Straßburger, E., Noll, F. Schenck, H., Schimper, A.F.W., eds. Fischer, Stuttgart New YorkGoogle Scholar
  30. Waller, G.R., Nowacki, E.K. (1978) Alkaloid biology and metabolism in plants Plenum Press, New York LondonGoogle Scholar
  31. Whittaker, R.H., Feeney, P.P. (1971) Allelochemics: chemical interactions between species. Science 171, 757–770PubMedGoogle Scholar
  32. Wink, M. (1983a) Inhibition of seed germination by quinolizidine alkaloids. Aspects of allelopathy in Lupinus albus. L. Planta 158, 365–368Google Scholar
  33. Wink, M. (1983b) Wounding-induced increase of quinolizidine alkaloid accumulation in lupin leaves. Z. Naturforsch. Teil C, 38, 905–909Google Scholar
  34. Wink, M. (1984a) Chemical defense of lupins. Mollusc-repellent properties of quinolizidine alkaloids. Z. Naturforsch. (in press)Google Scholar
  35. Wink, M. (1984b) Chemical defense of leguminosae. Are quinolizidine alkaloids part of the antimicrobial defense system of lupins? Z. Naturforsch. (in press)Google Scholar
  36. Wink, M., Hartmann, T. (1981) Sites of enzymatic synthesis of quinolizidine alkaloids and their accumulation in Lupinus polyphyllus. Z. Pflanzenphysiol. 102, 337–344Google Scholar
  37. Wink, M., Hartmann, T. (1982a) Localization of the enzymes of quinolizidine alkaloid biosynthesis in the leaf chloroplast of Lupinus polyphyllus. Plant Physiol. 70, 74–77Google Scholar
  38. Wink, M., Hartmann, T. (1982b) Diurnal fluctuations of quinolizidine alkaloid accumulation in legume plants and photomixotrophic cell suspension cultures. Z. Naturforsch. Teil C 37, 369–375Google Scholar
  39. Wink, M., Hartmann, T., Witte, L., Rheinheimer, J. (1982a) Interrelationship between quinolizidine alkaloid producing legumes and infesting insects: exploitation of the alkaloidcontaining phloem sap of Cytisus scoparius by the broom aphid Aphis cytisorum. Z. Naturforsch. Teil C 37, 1081–1086Google Scholar
  40. Wink, M., Witte, L., Schiebel, H.M., Hartmann, T. (1980a) Alkaloid pattern of cell suspension cultures and differentiated plants of Lupinus polyphyllus. Planta Med. 38, 238–245Google Scholar
  41. Wink, M., Schiebel, H.M., Witte, L., Hartmann, T. (1982b) Quinolizidine alkaloids from plants and their cell suspension cultures. Ester alkaloids of Lupinus polyphyllus. Planta Med. 44, 15–20Google Scholar
  42. Wink, M., Hartmann, T., Witte, L. (1980b) Biotransformation of cadaverine and potential intermediates of lupanine biosynthesis by plant cell suspension cultures. Planta Med. 40, 31–39Google Scholar
  43. Wink, M., Witte, L., Hartmann, T. (1981) Quinolizidine alkaloid composition of plants and of photomixotrophic cell suspension cultures of Sarothammus scoparius and Orobanche rapum-genistae. Planta Med. 43, 342–352Google Scholar
  44. Wink, M., Witte, L., Hartmann, T., Theuring, C., Volz, V. (1983) Accumulation of quinolizidine alkaloids in plants and cell suspension cultures: Genera Lupinus, Cytisus, Baptisia, Genista, Laburnum, and Sophora. Planta Med. 48, 253–257Google Scholar
  45. Zenk, M. (1967) Biochemie und Physiologie sekundärer Pflanzenstoffe. Ber. Dtsch. Bot. Ges. 80, 573–591Google Scholar
  46. Zucker, M. (1972) Light and enzymes. Annu. Rev. Plant Physiol. 23, 133–156CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Michael Wink
    • 1
  • Ludger Witte
    • 2
  1. 1.Institut für Pharmazeutische Biologie der Technischen UniversitätBraunschweigFederal Republic of Germany
  2. 2.Gesellschaft für Biotechnologische Forschung mbHBraunschweig-StöckheimFederal Republic of Germany

Personalised recommendations