Archives of Microbiology

, Volume 124, Issue 1, pp 21–31 | Cite as

A comparative study on the composition of chlorosomes (Chlorobium vesicles) and cytoplasmic membranes from Chloroflexus aurantiacus strain Ok-70-fl and Chlorobium limicola f. thiosulfatophilum strain 6230

  • Karin Schmidt
Article

Abstract

Highly purified fractions of chlorosomes and cytoplasmic membranes were isolated from Chloroflexus aurantiacus Ok-70-fl and Chlorobium limicola 6230. These fractions were comparatively analyzed for their pigmentation, phospholipid, glycolipid, and cytochrome c content as well as for their specific activities of succinate dehydrogenase and NADH-oxidase. The data showed that there are some differences in pigmentation and phospholipid content between the isolated fractions of Chloroflexus and Chlorobium. Chlorosomes of Chloroflexus contained a specific BChl a-complex with a characteristic absorption maximum at about 790 nm. This BChl a-complex could not be detected in spectra of chlorosomes from Chlorobium. The near infrared region of the spectra of the isolated cytoplasmic membranes of both organisms revealed considerable differences: The BChl a-complexes of Chloroflexus membranes exhibited peaks at 806 and 868 nm whereas the membranes of Chlorobium had a single BChl a-peak at 710 nm. In contrast to the findings with Chlorobium the chlorosomes of Chloroflexus contained at least twice as much phospholipids as did the cytoplasmic membranes. In Chlorobium the phospholipid content of cytoplasmic membranes is three times that of their chlorosomes. The distribution of all other components (carotenoid composition, enzyme activities, cytochrome c content, and glycolipids) was about the same in both strains. From the data it was concluded that differences in the organization of the photosynthetic apparatus are mainly based on differences of the organization of the photosynthetic units in the cytoplasmic membrane and probably the kind of linkage of the light harvesting system in the chlorosomes with the reaction center in the cytoplasmic membranes.

Key words

Chloroflexus aurantiacus Chlorobium limicola Chlorosomes Cytoplasmic membranes 

Abbreviations

BChl c

bacteriochlorophyll c

BChl a

bacteriochlorophyll a

DSM

Deutsche Sammlung von Mikrorganismen

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartsch, R. C.: Bacterial cytochromes. In: Methods in Enzymology, Photosynthesis Part A. Vol. 23 (A. San Pietro ed.), pp. 344–363. New York: Academic Press 1971Google Scholar
  2. Bartsch, R. C.: Cytochromes. In: The Photosynthetic Bacteria (R. K. Clayton, W. R. Sistrom, eds.), pp. 249–279. New Yorl. Plenum Press 1978Google Scholar
  3. Biebl, H., Pfennig, N.: Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch. Microbiol. 117, 9–16 (1978)Google Scholar
  4. Bligh, E. G., Dyer, W. J.: A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959)Google Scholar
  5. Clayton, R. K.: Absorption spectra of photosynthetic bacteria and their chlorophylls. In: Bacterial Photosynthesis (H. Gest, A. San Pietro and L. P. Vernon, eds.), pp. 495–500. Yellow Springs: Antioch Press 1963Google Scholar
  6. Cohen-Bazire, G., Pfennig, N., Kunisawa, R.: The fine structure of green bacteria. J. Cell Biol. 22, 207–225 (1964)PubMedGoogle Scholar
  7. Cruden, D. L., Stanier, R. Y.: The characterization of chlorobium vesicles and membrane isolated from green bacteria. Arch. Mikrobiol. 72, 115–134 (1970)PubMedGoogle Scholar
  8. Davies, B. H.: Analysis of carotenoid pigments. In: Chemistry and Biochemistry of Plant Pigments (T. W. Goodwin, ed.), pp 489–532. New York: Academic Press 1965Google Scholar
  9. Gorlenko, V. M.: Characteristics of filamentous phototrophic bacteria from fresh water lakes. Microbiology USSR (English translation) 44, 682–684 (1975)Google Scholar
  10. Halfen, L. N., Pierson, B. K., Francis, G. W.: Carotenoids of a gliding organism containing bacteriochlorophylls. Arch. Mikrobiol. 82, 240–246 (1972)Google Scholar
  11. Hassid, W. Z., Abraham, S. A.: Chemical procedures for analysis of polysaccharides. In: Methods in Enzymology, Vol. III (S. P. Colowick, N. O. Kaplan, eds.), pp. 34–50. New York: Academic Press 1957Google Scholar
  12. Herbert, D., Phipps, R. L., Strange, R. E.: Chemical analysis of microbial cells. In: Methods in Microbiology, Vol. 5B (J. R. Norris, D. W. Ribbons, eds.), pp. 209–344. New York: Academic Press 1971Google Scholar
  13. Kakuno, T., Bartsch, R. C., Nishikawa, D., Horio, T.: Redox components associated with chromatophores from Rhodospirillum rubrum. J Biochem. 70, 79–94 (1971)PubMedGoogle Scholar
  14. Kenyon, C. N., Gray, A. M.: Preliminary analysis of lipids and fatty acids of green bacteria and Chloroflexus aurantiacus. J. Bacteriol. 120, 131–138 (1974)PubMedGoogle Scholar
  15. Ketchum, P. A., Holt, S. C.: Isolation and characterization of the membranes from Rhodospirillum rubrum. Biochim. Biophys. Acta 196, 141–161 (1970)PubMedGoogle Scholar
  16. King, T. E.: Reconstitution of respiratory chain enzyme systems. XI. Use of artificial electron acceptors in the assay of succinatedehydrogenase enzymes. J. Biol. Chem. 238, 4032–4036 (1963)PubMedGoogle Scholar
  17. Liaaen-Jensen, S.: The constitution of some bacterial carotenoids and their bearing on biosynthetic problems. K. Nor. Vidensk. Selsk. Skr. No 8 (1962)Google Scholar
  18. Liaaen-Jensen, S.: Chemistry of carotenoid pigments. In: The Photosynthetic Bacteria (R. K. Clayton, W. R. Sistrom, eds.), pp. 233–247. New York: Plenum Press 1978Google Scholar
  19. Liaaen-Jensen, S., Hegge, E., Jackman, L. M.: Bacterial carotenoids, XVII. The carotenoids o photosynthetic green bacteria. Acta Chem. Scand. 18, 1703–1718 (1964)Google Scholar
  20. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)PubMedGoogle Scholar
  21. Madigan, M. T., Brock, T. D.: ‘Chlorobium-type’ vesicles of photosynthetically-grown Chloroflexus aurantiacus observed using negative staining techniques. J. gen. Microbiol. 102, 279–285 (1977)Google Scholar
  22. Mandel, M., Leadbetter, E. R., Pfennig, N., Trüper, H. G.: Deoxyribonucleic acid base composition of phototrophic bacteria. Int. J. Syst. Bacteriol. 21, 222–230 (1971)Google Scholar
  23. Miura, T., Mizushimo, S.: Separation by density gradient centrifugation of two types of membranes from spheroplast membranes of Escherichia coli K12. Biochim. Biophys. Acta 150, 159–161 (1968)PubMedGoogle Scholar
  24. Olson, J. M., Giddings, T. H., Shaw, E. K.: An enriched reaction center preparation from green photosynthetic bacteria. Biochim. Biophys. Acta 449, 197–208 (1976a)PubMedGoogle Scholar
  25. Olson, J. M., Prince, R. C., Brune, D. C.: Reaction center complexes from green bacteria. Brookhaven Symp. Biol. 28, 238–246 (1976b)PubMedGoogle Scholar
  26. Pfennig, N., Lippert, K. D.: Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch. Mikrobiol. 55, 245–256 (1966)Google Scholar
  27. Pierson, B. K., Castenholz, R. W.: A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch. Microbiol. 100, 5–24 (1974a)PubMedGoogle Scholar
  28. Pierson, B. K., Castenholz, R. W.: Studies of pigments and growth in Chloroflexus aurantiacus, a phototrophic filamentous bacterium. Arch. Microbiol. 100, 283–305 (1974b)Google Scholar
  29. Pierson, B. K., Castenholz, R. W.: Photosynthetic apparatus and cell membranes of green bacteria. In: The Photosynthetic Bacteria (R. K. Clayton, W. R. Sistrom, eds.), pp. 179–197. New York: Plenum Press 1978Google Scholar
  30. Schmidt, K.: Carotenoid glycosides in phototrophic bacteria (abstract). In: Proceedings of the Second International Symposium on Photosynthetic Prokaryotes (G. A. Codd, W. D. P. Stewart, eds.), pp. 58–60, Dundee, U. K. 1976Google Scholar
  31. Schmidt, K., Mayer, F.: Development and pigmentation of chlorosomes (“Chlorobium vesicles”) in Chloroflexus aurantiacus strain Ok-70-fl (abstract). In: Abstract of the Third International Symposium on Photosynthetic Prokaryotes (J. M. Nichols, ed.), D10. Oxford, U. K. 1979Google Scholar
  32. Schmidt, K., Schiburr, R.: Die Carotinoide der grünen Schwefelbakterien: Carotinoidzusammensetzung in 18 Stämmen. Arch. Mikrobiol. 74, 350–355 (1970)Google Scholar
  33. Schmitz, R.: Über die Zusammensetzung der pigmenthaltigen Strukturen aus Prokaryoten. II. Untersuchungen an Chromatophoren von Chlorobium thiosulfatophilum Stamm Tassajara. Arch. Mikrobiol. 56, 238–247 (1967)PubMedGoogle Scholar
  34. Staehelin, L. A., Golecki, J. R., Fuller, R. C., Drews, G.: Visualization of the supramolecular architecture of chlorosomes (Chlorobium-type vesicles) in freeze-fractured cells of Chloroflexus aurantiacus. Arch. Microbiol. 119, 269–277 (1978)Google Scholar
  35. Sykes, F., Gibbon, J. A., Hoare, D. S.: The macromolecular organization of cell-free extracts of Chlorobium thiosulfatophilum L 660. Biochim. Biophys. Acta 109, 409–423 (1965)PubMedGoogle Scholar
  36. Thornber, J. P., Trosper, T. L., Strouse, C. E.: Bacteriochlorophyll in vivo: Relationship of spectral forms to specific membrane components. In: The Photosynthetic Bacteria (R. K. Clayton, W. R. Sistrom, eds.), pp. 133–160. New York: Plenum Press 1978Google Scholar
  37. Throm, E., Oelze, J., Drews, G.: The distribution of NADH-oxidase in the membrane systems of Rhodospirillum rubrum. Arch. Mikrobiol. 72, 361–370 (1970)PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Karin Schmidt
    • 1
  1. 1.Institut für Mikrobiologie der Gesellschaft für Strahlen- und Umweltforschung mbH.GöttingenGermany

Personalised recommendations