Archives of Microbiology

, Volume 124, Issue 1, pp 1–11 | Cite as

Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium

  • Alexander J. B. Zehnder
  • Beat A. Huser
  • Thomas D. Brock
  • Karl Wuhrmann


A methanogenic bacterium, commonly seen in digested sludge and referred to as the “fat rod” or Methanobacterium soehngenii, has been enriched to a monoculture and is characterized. Cells are gramnegative, non-motile and appear as straight rods with flat ends. They form filaments which can grow to great lengths. The structure of the outer cell envelop is similar to Methanospirillum hungatii. The organism grows on a mineral salt medium with acetate as the only organic component. Acetate is the energy source, and methane is formed exclusively from the methyl group. Acetate and carbon dioxide act as sole carbon source and are assimilated in a molar ratio of about 1.9:1. The reducing equivalents necessary to build biomass from these two precursors are obtained from the total oxidation of some acetate. Hydrogen is not used for methane formation and is not needed for growth. Formate is cleaved into hydrogen and carbon dioxide. Coenzyme M was found to be present at levels of 0.35 nmol per mg of dry cells and F420 amounted to 0.55 μg per mg protein. The mean generation time was 9 days at 33°C.

Key words

Methane bacterium Electronmicroscopy Acetate decarboxylation Formate decarboxylation Acetate assimilation CO2 assimilation Growth yield Coenzyme M-F420 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balch, W. E., Wolfe, R. S.: New approach to cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl. Environ. Microbiol. 32, 781–791 (1976)PubMedGoogle Scholar
  2. Balch, W. E., Wolfe, R. S.: Specificity and biological distribution of coenzyme M (2-mercaptoethanesulfonic acid). J. Bacteriol. 137, 256–263 (1979)PubMedGoogle Scholar
  3. Barker, H. A.: Studies upon the methane-producing bacteria. Arch. Mikrobiol, 7, 420–438 (1936)Google Scholar
  4. Bryant, M. P.: Methane-producing bacteria. In: Bergey's manual of determinative bacteriology, 8th ed. (R. E. Buchanan, N. E. Gibbons, eds.), pp 472–477. Baltimore: Williams and Wilkins 1974Google Scholar
  5. Buswell, A. M., Neave, S. L.: Laboratory studies of sludge digestion. Illinois State Water Survey, Bulletin No. 30, Urbana, Ill. (1930)Google Scholar
  6. Doddema, H. J., Vogels, G. D.: Improved identification of methanogenic bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 36, 752–754 (1978)PubMedGoogle Scholar
  7. Edwards, T., McBride, B. C.: New method for the isolation and identification of methanogenic bacteria. Appl. Microbiol. 29, 540–545 (1975)PubMedGoogle Scholar
  8. Eirich, L. D.: The structure of coenzyme F420, a novel electron carrier isolated from Methanobacterium strain M.o.H. Ph. D. thesis, University of Illinois at Urbana-Champaign (1978)Google Scholar
  9. Eirich, L. D., Vogels, G. D., Wolfe, R. S.: Proposed structure for coenzyme F420 from Methanobacterium Biochemistry 17, 4583–4593 (1978)PubMedGoogle Scholar
  10. Ferry, J. G., Smith, P. H., Wolfe, R. S.: Methanospirillum, a new genus of methanogenic bacteria and characterization of Methanospirillum hungatii sp. nov. Int. J. Syst. Bacteriol. 24, 465–469 (1974)Google Scholar
  11. Ferry, J. G., Wolfe, R. S.: Anaerobic degradation of benzoate to methane by a microbial consortium. Arch. Microbiol. 107, 33–40 (1976)PubMedGoogle Scholar
  12. Groenewege, J.: Bakteriologische Untersuchungen über biologische Reinigung. Med. Burg. Geneesk. Dienst, Deel 1, 66–125 (1920)Google Scholar
  13. Gunsalus, R., Eirich, L. D., Romesser, J., Balch, W., Shapiro, S., Wolfe, R. S.: Methyl transfer and methane formation. In: Microbial production and utilization of gases (H2, CH4, CO) (H. G. Schlegel, G. Gottschalk, D. Pfennig, eds.), pp. 191–197. Göttingen: Goltze (1976)Google Scholar
  14. Gunsalus, R. P., Wolfe, R. S.: Stimulation of CO2 reduction to methane by methyl-coenzyme M in extracts of Methanobacterium. Biochem. Biophys. Res. Commun. 76, 790–795 (1977)PubMedGoogle Scholar
  15. Hoppe-Seyler, F.: Über die Processe der Gährungen und ihre Beziehung zum Leben der Organismen. Pflüger's Arch. f. ges. Physiol. 12, 1–17 (1876)Google Scholar
  16. Hoppe-Seyler, F.: Die Methangährung der Essigsäure. Hoppe-Seyler's Z. Physiol. Chem. 11, 561–568 (1887)Google Scholar
  17. Horridge, G. A., Tamm, S. L.: Critical point drying for scanning electron microscopic study of ciliary motion. Science 163, 817–818 (1969)Google Scholar
  18. Kaspar, H. F., Wuhrmann, K.: Kinetic parameters and relative turnovers of some important catabolic reactions in digesting sludge. Appl. Environ. Microbiol. 36, 1–7 (1978)PubMedGoogle Scholar
  19. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)PubMedGoogle Scholar
  20. Mah, R. A., Smith, M. R., Baresi, L.: Studies on an acetatefermenting strain of Methanosarcina. Appl. Environ. Microbiol. 35, 1174–1184 (1978)PubMedGoogle Scholar
  21. Mitchell, P.: Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. Cambridge Philos. Soc. 41, 445–502 (1966)Google Scholar
  22. Mountfort, D. O.: Evidence for ATP synthesis driven by a proton gradient in Methanosarcina barkeri. Biochem. Biophys. Res. Comm. 85, 1346–1352 (1978)PubMedGoogle Scholar
  23. Mylroie, R. L., Hungate, R. E.: Experiments on the methane bacteria in sludge. Can. J. Microbiol. 1, 55–64 (1954)PubMedGoogle Scholar
  24. Pine, M. J., Barker, H. A.: Studies on the methane fermentation. XII. The pathway of hydrogen in the acetate fermentation. J. Bacteriol. 71, 644–648 (1956)PubMedGoogle Scholar
  25. Popoff, L.: Über die Sumpfgasgährung. Pflüger's Arch. f. ges. Physiol. 10, 113–146 (1873)Google Scholar
  26. Pretorius, W. A.: The effect of formate on the growth of acetate utilizing methanogenic bacteria. Water Res. 6, 1213–1217 (1972)CrossRefGoogle Scholar
  27. Reynolds, E.: The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963)CrossRefPubMedGoogle Scholar
  28. Schnellen, Ch. G. T. P.: Onderzoekingen over de Methaangistring. Dissertation. Technische Hoogeschool Delft. Rotterdam: De Maasstad 1947Google Scholar
  29. Smit, J.: Die Gärungssarcinen. Eine Monographie. Pflanzen-forschung 14, 1–59 (1930)Google Scholar
  30. Smith, M. R., Mah, R. A.: Growth and methanogenesis by Methanosarcina strain 227 on acetate and methanol. Appl. Environ. Microbiol. 36, 870–879 (1978)PubMedGoogle Scholar
  31. Söhngen, N. L.: Sur le rôle du méthane dans la vie organique. Rec. trav. chim. 29, 238–274 (1910)Google Scholar
  32. Spurr, A. R.: A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43 (1969)PubMedGoogle Scholar
  33. Stadtman, T. C., Barker, H. A.: Studies on the methane fermentation. IX. The origin of methane in the acetate and methanol fermentations by methanosarcina. J. Bacteriol. 61, 81–86 (1951)PubMedGoogle Scholar
  34. Tzeng, S. F., Wolfe, R. S., Bryant, M. P.: Factor 420-dependent pyridine nucleotide-linked hydrogenase system of Methanobacterium ruminantium. J. Bacteriol. 121, 184–191 (1975)PubMedGoogle Scholar
  35. van den Berg, L., Patel, G. B., Clark, D. S., Lentz, C. P.: Factors affecting rate of methane formation from acetic acid by enriched methanogenic cultures. Can. J. Microbiol. 22, 1312–1319 (1976)PubMedGoogle Scholar
  36. Wellinger, A.: Untersuchungen über den Stoffwechsel des Methanbakteriums Stamm AZ. Ph. D. thesis ETH No. 5878. Zürich: Juris Druck and Verlag 1977Google Scholar
  37. Wolin, E. A., Wolin, M. J., Wolfe, R. S.: Formation of methane by bacterial extracts. J. Biol. Chem. 238, 2882–2886 (1963)PubMedGoogle Scholar
  38. Zehnder, A. J. B., Wuhrmann, K.: Physiology of a Methanobacterium strain AZ. Arch. Microbiol. 111, 199–205 (1977)Google Scholar
  39. Zehnder, A. J. B., Brock, T. D.: Methane formation and methane oxidation by methanogenic bacteria. J. Bacteriol. 137, 420–432 (1979)PubMedGoogle Scholar
  40. Zehnder, A. J. B., Huser, B., Brock, T. D.: Measuring radioactive methane with liquid scintillation counter. Appl. Environ. Microbiol. 37, 897–899 (1979)Google Scholar
  41. Zeikus, J. G., Bowen, V. G.: Fine structure of Methanospirillum hungatii. J. Bacteriol. 121, 373–380 (1975)PubMedGoogle Scholar
  42. Zeikus, J. G., Winfrey, M. R.: Temperature limitation of methanogenesis in aquatic sediments. Appl. Environ. Microbiol. 31, 99–107 (1976)PubMedGoogle Scholar
  43. Zhilina, T. N.: The fine structure of Methanosarcina. Mikrobiologiya 40, 674–680 (1971)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Alexander J. B. Zehnder
    • 1
  • Beat A. Huser
    • 2
    • 3
  • Thomas D. Brock
    • 1
  • Karl Wuhrmann
    • 2
    • 3
  1. 1.Department of BacteriologyUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Swiss Federal Institute of TechnologyZürichSwitzerland
  3. 3.Federal Institute for Water Resources and Water Pollution ControlDübendorfSwitzerland

Personalised recommendations