Advertisement

Archives of Microbiology

, Volume 123, Issue 3, pp 275–279 | Cite as

The sensitivity of the pseudomurein-containing genus Methanobacterium to inhibitors of murein synthesis

  • Walter P. Hammes
  • Josef Winter
  • Otto Kandler
Article

Abstract

The sensitivity to inhibitors of various steps of murein synthesis was studied with six strains of methanogenic bacteria. Four of the strains belong to the genus Methanobacterium, which contains pseudomurein in its cell walls. This polymer-as well as murein-is not present in the two control organisms, Methanosarcina barkeri and Methanospirillum hungatii, which were found to be resistant to all inhibitors of murein synthesis. The four strains of Methanobacterium were resistant to the antibiotics fosfomycin, D-cycloserine, vancomycin, penicillin G and cephalosporin C, all of which inhibit the synthesis or function of the peptide subunits of murein. On the other hand, the four strains were susceptible to bacitracin, nisin, gardimycin and enduracidin. It is therefore assumed that the biosynthesis of murein and pseudomurein, respectively, may have some reactions of the so-called lipid cycle and the polymerization of the heteroglycan strands in common.

Key words

Methanobacterium Methanosarcina barkeri Methanospirillum hungatii Cell wall Pseudomurein Sensitivity Antibiotics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balch, W. E., Wolfe, R. S.: New approach to the cultivation of methanogenic bacteria: 2-Mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl. Environ. Microbiol. 32, 781–791 (1976)PubMedGoogle Scholar
  2. Blumberg, P. M., Strominger, J. L.: Interaction of penicillin with the bacterial cell: penicillin-binding proteins and penicillin-sensitive enzymes. Bacteriol. Rev. 38, 291–335 (1974)PubMedGoogle Scholar
  3. Brock, T. D., Brock, K. M., Belly, R. T., Weiss, R. L.: Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. Microbiol. 84, 54–68 (1972)Google Scholar
  4. Brown, A. D., Cho, K. Y.: The walls of the extremely halophilic cocci: gram-positive bacteria lacking muramic acid. J. Gen. Microbiol. 62, 267–270 (1970)PubMedGoogle Scholar
  5. Brown, A. D., Shorey, C. D.: The cell envelope of two extremely halophilic bacteria. J. Cell. Biol. 18, 681–689 (1963)CrossRefPubMedGoogle Scholar
  6. Dähn, U., Hagenmaier, H., Höhne, H., König, W. A., Zähner, H.: Stoffwechselprodukte von Mikroorganismen. 154. Mitteilung. Nikkomycin, ein neuer Hemmstoff der Chitinsynthese bei Pilzen. Arch. Microbiol. 107, 143–160 (1976)PubMedGoogle Scholar
  7. Darland, G., Brock, T. D., Samsonoff, W., Conti, S. F.: A thermophilic, acidophilic mycoplasma isolated from a coal refuse pile. Science 170, 1416–1418 (1970)PubMedGoogle Scholar
  8. Ferry, J. G., Smith, P. H., Wolfe, R. S.: Methanospirillum, a new genus of methanogenic bacteria, and characterization of Methanospirillum hungatii sp. nov. Int. J. Syst. Bacteriol. 24 465–469 (1974)Google Scholar
  9. Hammes, W. P., Neuhaus, F. C.: On the mechanism of action of vancomycin: inhibition of peptidoglycan synthesis. Antimicrob. Agents Chemother. 6, 722–728 (1974)PubMedGoogle Scholar
  10. Jones, J. B., Bowers, B., Stadtman T. C.: Methanococcus vannielii: ultrastructure and sensitivity to detergents and antibiotics. J. Bacteriol. 130, 1357–1363 (1977)PubMedGoogle Scholar
  11. Kahan, F. M., Kahan, J. S., Cassidy, P. J., Kropp, H.: The mechanism of action of fosfomycin (Phosphomycin). Ann. N.Y. Acad. Sci. 235, 364–386 (1974)PubMedGoogle Scholar
  12. Kandler, O.: Zellwandstrukturen bei Methan-Bakterien. Zur Evolution der Prokaryonten. Naturwissenschaften 66, 95–105 (1979)Google Scholar
  13. Kandler, O., Hippe, H.: Lack of peptidoglycan in the cell walls of Methanosarcina barkeri. Arch: Microbiol. 113, 57–60 (1977)Google Scholar
  14. Kandler, O., König, H.: Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria. Arch Microbiol. 118, 141–152 (1978)PubMedGoogle Scholar
  15. König, H., Kandler, O.: The amino acid sequence of the peptide moiety of the pseudomurein from Methanobacterium thermoautotrophicum. Arch. Microbiol. 121, 271–275 (1979a)PubMedGoogle Scholar
  16. König, H., Kandler, O.: N-Acetyltalosaminuronic acid a constituent of pseudomurein of the genus Methanobacterium. Arch. Microbiol. in press (1979b)Google Scholar
  17. Kushner, D. J., Onishi, H.: Absence of normal cell wall constituents from the outer layers of Halobacterium cutirubrum. Can. J. Biochem. 46, 997–998 (1968)PubMedGoogle Scholar
  18. Lughtenberg, E. J. J., Schijndee-van Dam, A. van, Bellegem, T. H. M. van: In vivo and in vitro action of new antibiotics interfering with the utilization of N-acetylglucosamine-N-acetylmuramyl-pentapeptide. J. Bacteriol. 108, 20–29 (1971)PubMedGoogle Scholar
  19. Matsuhashi, M., Ohara, J., Yoshiyama, Y.: Inhibition of bacterial cell-wall synthesis in vitro by enduracidin, a new polypeptide antibiotic. In: Progr. Antimicrob. Anticancer Chemother., Proc. Inter. Congr. Chemother., 6th 1969, Tokyo, Vol. 1, pp. 226-Baltimore: University Park Press 1970Google Scholar
  20. Mescher, M. F., Strominger, J. L.: The cell surface protein of Halobacterium salinarium. In: Energetics and structure of halophile microorganisms (S. R. Caplan and M. Ginzburg, eds.), pp. 503–511. Elsevier/North Holland Medical Press 1978Google Scholar
  21. Neuhaus, F. C.: D-Cycloserine and O-Carbamyl-D-Serine. In: Antibiotics: Mechanism of action, Vol. 1 (D. Gottlieb and R. D. Shaw, eds.), pp. 40–83. Berlin, Heidelberg, New York: Springer 1967Google Scholar
  22. Perkins, H. R., Nieto, M.: The molecular basis for the antibiotic action of vancomycin, restocetin and related drugs. In: Molecular mechanisms of antibiotic action on protein biosynthesis and membranes, proceedings of a symposium (E. Munoz, E. Garcia-Ferrandiz, and D. Vasquez, eds.), pp. 363–387. Granada, June 1971. Amsterdam, Elsevier Scientific Publishing Company 1972Google Scholar
  23. Reisinger, P. W. M., Seidel, H., Hammes, W. P.: Die Wirkungsweise des Peptidantibiotikums Nisin. Zusammenfassungen der Kurzvorträge und Poster, p. 80. Tagungen der Sektion I der DGHM (Abwassermikrobiologie) und der Deutschen Sektion der ASM (molekulare Systematik) München, März 1979Google Scholar
  24. Reistad, R.: Cell wall of an extremely halophilic coccus. Investigation of ninhydrin-positive compounds. Arch. Mikrobiol. 82, 24–30 (1972)PubMedGoogle Scholar
  25. Somma, S., Merati, W., Parenti, F.: Gardimycin, a new antibiotic inhibiting peptidoglycan synthesis. Antimicrob. Agents Chemothr. 11, 396–401 (1977)Google Scholar
  26. Steber, J., Schleifer, K. H.: Halococcus morrhuae: A sulfated heteropolysaccharide as the structural component of the bacterial cell wall. Arch. Microbiol. 105, 173–177 (1975)PubMedGoogle Scholar
  27. Stone, K. J., Strominger, J. L.: Mechanisms of action of bacitracin: complexation with metal ion and C55-isoprenyl pyrophosphate. Proc. Nat. Acad. Sci. USA 68, 3223–3227 (1971)PubMedGoogle Scholar
  28. Weiss, R. L.: Subunit cell wall of Sulfolobus acidocaldarius. J. Bacteriol. 118, 275–284 (1974)PubMedGoogle Scholar
  29. Woese, C. R., Magrum, L. J., Fox, G. E.: Archaebacteria. J. Mol. Evol. 11, 245–252 (1978)PubMedGoogle Scholar
  30. Wolin, E. A., Wolin, M. J., Wolfe, R. S.: Formation of methane by bacterial extracts. J. Biol. Chem. 238, 2882–2886 (1963)PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Walter P. Hammes
    • 1
  • Josef Winter
    • 1
  • Otto Kandler
    • 1
  1. 1.Botanisches Institut der Universität MünchenMünchen 19Federal Republic of Germany

Personalised recommendations