Archiv für Mikrobiologie

, Volume 59, Issue 1–3, pp 32–40 | Cite as

Ferredoxin-dependent carbon assimilation in Rhodospirillum rubrum

  • Bob B. Buchanan
  • M. C. W. Evans
  • Daniel I. Arnon
Article

Summary

Evidence has been presented that a soluble fraction from R. rubrum cells contains two new primary carboxylation reactions which depend on the reducing power of ferredoxin: (a) pyruvate synthase which brings about a synthesis of pyruvate from acetyl-CoA and CO2 and (b) α-ketoglutarate synthase which brings about a synthesis of α-ketoglutarate from succinyl-CoA and CO2. The soluble fraction of R. rubrum cells contains also a series of other enzymes which, together with the ferredoxin-dependent enzymes, constitutes a reductive carboxylic acid cycle—a new cyclic pathway for CO2 assimilation that was first found in the photosynthetic bacterium, Chlorobium thiosulfatophilum.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrew, I. G., and J. G. Morris: The biosynthesis of alanine by Clostridium kluyveri. Biochim. biophys. Acta (Amst.) 97, 176 (1965).Google Scholar
  2. Bachofen, R., B. B. Buchanan, and D. I. Arnon: Ferredoxin as a reductant in pyruvate synthesis by a bacterial extract. Proc. nat. Acad. Sci. (Wash.) 51, 690 (1964).Google Scholar
  3. Bassham, J. A., and M. Calvin: Path of carbon in photosynthesis. New York: Benjamin Press 1962.Google Scholar
  4. Buchanan, B. B., and D. I. Arnon: Ferredoxin-dependent synthesis of labelled pyruvate from labelled acetyl coenzyme A and carbon dioxide. Biochem. biophys. Res. Commun. 20, 163 (1965).Google Scholar
  5. —, R. Bachofen, and D. I. Arnon: Role of ferrodoxin in the reductive assimilation of CO2 and acetate by extracts of the photosynthetic bacterium, Chromatium. Proc. nat. Acad. Sci. (Wash.) 52, 839 (1964).Google Scholar
  6. —, and M. C. W. Evans: The synthesis of α-ketoglutarate from succinate and carbon dioxide by a subcellular preparation of a photosynthetic bacterium. Proc. nat. Acad. Sci. (Wash.) 54, 1212 (1965).Google Scholar
  7. —— and M. C. W. Evans: The synthesis of phosphopenolpyruvate from pyruvate and ATP by extracts of photosynthetic bacteria. Biochem. biophys. Res. Commun. 22, 484 (1966).Google Scholar
  8. ——, M. C. W. Evans, and D. I. Arnon: Ferredoxin-dependent pyruvate synthesis by enzymes of photosynthetic bacteria. In: A. San Pietro, ed.: Non-Heme Iron Proteins: Role in Energy Conversion, p. 175. Yellow Springs, Ohio: Antioch Press 1965.Google Scholar
  9. —, W. Lovenberg, and J. C. Rabinowitz: A comparison of clostridial ferredoxins. Proc. nat. Acad. Sci. (Wash.) 49, 345 (1963).Google Scholar
  10. Cutinelli, C., G. Ehrensvärd, L. Reio, E. Saluste, and R. Stjernholm: Acetic acid metabolism in Rhodospirillum rubrum under anaerobic conditions, II. Ark. Kemi 3, 315 (1951).Google Scholar
  11. Evans, M. C. W.: The photoassimilation of succinate to hexose by Rhodospirillum rubrum. Biochem. J. 95, 669 (1965).Google Scholar
  12. —, and B. B. Buchanan: Photoreduction of ferredoxin and its use in carbon dioxide fixation by a subcellular system from a photosynthetic bacterium. Proc. nat. Acad. Sci. (Wash.) 53, 1420 (1965).Google Scholar
  13. —— and D. I. Arnon: A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc. nat. Acad. Sci. (Wash.) 55, 928 (1966).Google Scholar
  14. Fuller, R. C., and M. Gibbs: Intracellular and phylogenetic distribution of ribulose 1,5-diphosphate carboxylase and d-glyceraldehyde-3-phosphate dehydrogenases. Plant Physiol. 34, 324 (1959).Google Scholar
  15. —, R. M. Smillie, E. C. Sisler, and H. L. Kornberg: Carbon metabolism in Chromatium. J. biol. Chem. 236, 2140 (1961).Google Scholar
  16. Gest, H., J. G. Ormerod, and K. S. Ormerod: Photometabolism of Rhodospirillum rubrum: light-dependent dissimilation of organic compounds to carbon dioxide and molecular hydrogen by an anaerobic citric acid cycle. Arch. Biochem. 97, 21 (1962).Google Scholar
  17. Heer, E., and R. Bachofen: Pyruvatstoffwechsel von Clostridium butyricum. Arch. Mikrobiol. 54, 1 (1966).Google Scholar
  18. Hoare, D. S.: The photo-assimilation of acetate by Rhodospirillum rubrum. Biochem. J. 87, 284 (1963).Google Scholar
  19. Knight, M.: The photometabolism of propionate by Rhodospirillum rubrum. Biochem. J. 84, 170 (1962).Google Scholar
  20. Lascelles, J.: The synthesis of porphyrins and bacterio-chlorophyll by cell suspensions of Rhodopseudomonas spheroides. Biochem. J. 62, 78 (1956).Google Scholar
  21. Losada, M., A. V. Trebst, S. Ogata, and D. I. Arnon: The equivalence of light and adenosine triphosphate in bacterial photosynthesis. Nature (Lond.) 186, 753 (1960).Google Scholar
  22. Ormerod, J. C., and H. Gest: Symposium on metabolism of inorganic compounds IV. Hydrogen photosynthesis and alternative metabolic pathways in photosynthetic bacteria. Bact. Rev. 26, 51 (1962).Google Scholar
  23. Pfennig, N.: Eine vollsynthetische Nährlösung zur selektiven Anreicherung einiger Schwefelpurpurbakterien. Naturwissenschaften 48, 136 (1961).Google Scholar
  24. Raeburn, S., and J. C. Rabinowitz: Pyruvate synthesis by a partially purified enzyme from Clostridium acidi-urici. Biochem. biophys. Res. Commun. 18, 303 (1965).Google Scholar
  25. Shigesada, K., K. Hidaka, H. Katsuki, and S. Tanaka: Biosynthesis of glutamate in photosynthetic bacteria. Biochim. biophys. Acta (Amst.) 112, 182 (1966).Google Scholar
  26. Smillie, R. M., N. Rigopoulos, and H. Kelly: Enzymes of the reductive pentose phosphate cycle in the purple and in the green photosynthetic sulphur bacteria. Biochim. biophys. Acta (Amst.) 56, 612 (1962).Google Scholar
  27. Stanier, R. Y., M. Doudoroff, R. Kunisawa, and R. Contopoulou: The role of organic substrates in bacterial photosynthesis. Proc. nat. Acad. Sci. (Wash.) 45, 1246 (1959).Google Scholar
  28. Stern, J. R.: Role of cofactors in pyruvate oxidation and synthesis by extracts of Clostridium kluyveri. In: A. San Pietro, ed.: Non-Heme Iron Proteins: Role in Energy Conversion, p. 199. Yellow Springs, Ohio: Antioch Press 1965.Google Scholar
  29. Tagawa, K., and D. I. Arnon: Ferredoxins as electron carriers in photosynthesis and in the biological production and consumption of hydrogen gas. Nature (Lond.) 195, 537 (1962).Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • Bob B. Buchanan
    • 1
  • M. C. W. Evans
    • 1
  • Daniel I. Arnon
    • 1
  1. 1.Department of Cell PhysiologyUniversity of CaliforniaBerkeley

Personalised recommendations