Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Ferredoxin-dependent carbon assimilation in Rhodospirillum rubrum

  • 103 Accesses

  • 56 Citations

Summary

Evidence has been presented that a soluble fraction from R. rubrum cells contains two new primary carboxylation reactions which depend on the reducing power of ferredoxin: (a) pyruvate synthase which brings about a synthesis of pyruvate from acetyl-CoA and CO2 and (b) α-ketoglutarate synthase which brings about a synthesis of α-ketoglutarate from succinyl-CoA and CO2. The soluble fraction of R. rubrum cells contains also a series of other enzymes which, together with the ferredoxin-dependent enzymes, constitutes a reductive carboxylic acid cycle—a new cyclic pathway for CO2 assimilation that was first found in the photosynthetic bacterium, Chlorobium thiosulfatophilum.

This is a preview of subscription content, log in to check access.

References

  1. Andrew, I. G., and J. G. Morris: The biosynthesis of alanine by Clostridium kluyveri. Biochim. biophys. Acta (Amst.) 97, 176 (1965).

  2. Bachofen, R., B. B. Buchanan, and D. I. Arnon: Ferredoxin as a reductant in pyruvate synthesis by a bacterial extract. Proc. nat. Acad. Sci. (Wash.) 51, 690 (1964).

  3. Bassham, J. A., and M. Calvin: Path of carbon in photosynthesis. New York: Benjamin Press 1962.

  4. Buchanan, B. B., and D. I. Arnon: Ferredoxin-dependent synthesis of labelled pyruvate from labelled acetyl coenzyme A and carbon dioxide. Biochem. biophys. Res. Commun. 20, 163 (1965).

  5. —, R. Bachofen, and D. I. Arnon: Role of ferrodoxin in the reductive assimilation of CO2 and acetate by extracts of the photosynthetic bacterium, Chromatium. Proc. nat. Acad. Sci. (Wash.) 52, 839 (1964).

  6. —, and M. C. W. Evans: The synthesis of α-ketoglutarate from succinate and carbon dioxide by a subcellular preparation of a photosynthetic bacterium. Proc. nat. Acad. Sci. (Wash.) 54, 1212 (1965).

  7. —— and M. C. W. Evans: The synthesis of phosphopenolpyruvate from pyruvate and ATP by extracts of photosynthetic bacteria. Biochem. biophys. Res. Commun. 22, 484 (1966).

  8. ——, M. C. W. Evans, and D. I. Arnon: Ferredoxin-dependent pyruvate synthesis by enzymes of photosynthetic bacteria. In: A. San Pietro, ed.: Non-Heme Iron Proteins: Role in Energy Conversion, p. 175. Yellow Springs, Ohio: Antioch Press 1965.

  9. —, W. Lovenberg, and J. C. Rabinowitz: A comparison of clostridial ferredoxins. Proc. nat. Acad. Sci. (Wash.) 49, 345 (1963).

  10. Cutinelli, C., G. Ehrensvärd, L. Reio, E. Saluste, and R. Stjernholm: Acetic acid metabolism in Rhodospirillum rubrum under anaerobic conditions, II. Ark. Kemi 3, 315 (1951).

  11. Evans, M. C. W.: The photoassimilation of succinate to hexose by Rhodospirillum rubrum. Biochem. J. 95, 669 (1965).

  12. —, and B. B. Buchanan: Photoreduction of ferredoxin and its use in carbon dioxide fixation by a subcellular system from a photosynthetic bacterium. Proc. nat. Acad. Sci. (Wash.) 53, 1420 (1965).

  13. —— and D. I. Arnon: A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc. nat. Acad. Sci. (Wash.) 55, 928 (1966).

  14. Fuller, R. C., and M. Gibbs: Intracellular and phylogenetic distribution of ribulose 1,5-diphosphate carboxylase and d-glyceraldehyde-3-phosphate dehydrogenases. Plant Physiol. 34, 324 (1959).

  15. —, R. M. Smillie, E. C. Sisler, and H. L. Kornberg: Carbon metabolism in Chromatium. J. biol. Chem. 236, 2140 (1961).

  16. Gest, H., J. G. Ormerod, and K. S. Ormerod: Photometabolism of Rhodospirillum rubrum: light-dependent dissimilation of organic compounds to carbon dioxide and molecular hydrogen by an anaerobic citric acid cycle. Arch. Biochem. 97, 21 (1962).

  17. Heer, E., and R. Bachofen: Pyruvatstoffwechsel von Clostridium butyricum. Arch. Mikrobiol. 54, 1 (1966).

  18. Hoare, D. S.: The photo-assimilation of acetate by Rhodospirillum rubrum. Biochem. J. 87, 284 (1963).

  19. Knight, M.: The photometabolism of propionate by Rhodospirillum rubrum. Biochem. J. 84, 170 (1962).

  20. Lascelles, J.: The synthesis of porphyrins and bacterio-chlorophyll by cell suspensions of Rhodopseudomonas spheroides. Biochem. J. 62, 78 (1956).

  21. Losada, M., A. V. Trebst, S. Ogata, and D. I. Arnon: The equivalence of light and adenosine triphosphate in bacterial photosynthesis. Nature (Lond.) 186, 753 (1960).

  22. Ormerod, J. C., and H. Gest: Symposium on metabolism of inorganic compounds IV. Hydrogen photosynthesis and alternative metabolic pathways in photosynthetic bacteria. Bact. Rev. 26, 51 (1962).

  23. Pfennig, N.: Eine vollsynthetische Nährlösung zur selektiven Anreicherung einiger Schwefelpurpurbakterien. Naturwissenschaften 48, 136 (1961).

  24. Raeburn, S., and J. C. Rabinowitz: Pyruvate synthesis by a partially purified enzyme from Clostridium acidi-urici. Biochem. biophys. Res. Commun. 18, 303 (1965).

  25. Shigesada, K., K. Hidaka, H. Katsuki, and S. Tanaka: Biosynthesis of glutamate in photosynthetic bacteria. Biochim. biophys. Acta (Amst.) 112, 182 (1966).

  26. Smillie, R. M., N. Rigopoulos, and H. Kelly: Enzymes of the reductive pentose phosphate cycle in the purple and in the green photosynthetic sulphur bacteria. Biochim. biophys. Acta (Amst.) 56, 612 (1962).

  27. Stanier, R. Y., M. Doudoroff, R. Kunisawa, and R. Contopoulou: The role of organic substrates in bacterial photosynthesis. Proc. nat. Acad. Sci. (Wash.) 45, 1246 (1959).

  28. Stern, J. R.: Role of cofactors in pyruvate oxidation and synthesis by extracts of Clostridium kluyveri. In: A. San Pietro, ed.: Non-Heme Iron Proteins: Role in Energy Conversion, p. 199. Yellow Springs, Ohio: Antioch Press 1965.

  29. Tagawa, K., and D. I. Arnon: Ferredoxins as electron carriers in photosynthesis and in the biological production and consumption of hydrogen gas. Nature (Lond.) 195, 537 (1962).

Download references

Author information

Additional information

Dedicated to C. B. van Niel on the occasion of his 70th birthday.

Aided by grants from the National Institute of General Medical Sciences, Office of Naval Research and the National Science Foundation.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Buchanan, B.B., Evans, M.C.W. & Arnon, D.I. Ferredoxin-dependent carbon assimilation in Rhodospirillum rubrum . Archiv. Mikrobiol. 59, 32–40 (1967). https://doi.org/10.1007/BF00406314

Download citation

Keywords

  • Assimilation
  • Pyruvate
  • Carboxylic Acid
  • Soluble Fraction
  • Acid Cycle