Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Relative cost of producing skeletal organic matrix versus calcification: Evidence from marine gastropods

  • 254 Accesses

  • 97 Citations

Abstract

Rates of shell regeneration in 15 species from all three suborders of prosobranch gastropods were related inversely to percent organic matrix of the shell. Since the gastropods in these experiments were not fed and therefore forced to rely upon stored energy reserves while regenerating this inverse relationship suggests that the production of skeletal organic matrix is more demanding metabolically than the crystallization of calcium carbonate. Such a relationship between the organic and inorganic components of carbonate skeletons may help explain the evolutionary loss of skeletal microstructures with a high percent organic matrix in several major invertebrate groups.

This is a preview of subscription content, log in to check access.

Literature cited

  1. Andrews, F. A.: Shell repair by the snail, Neritina. J. exp. Zool. 70, 75–107 (1935)

  2. Bernard, F. R.: Annual biodeposition and gross energy budget of mature Pacific oysters, Crassostrea gigas J. Fish. Res. Bd. Can. 31, 185–190 (1973)

  3. Cameron, C.J. I. F. Cameron and C. G. Paterson: Contributions of organic shell matter to biomass estimates of unionid bivalves. Can. J. Zool. 57, 1666–1669 (1979)

  4. Carter, J. G.: Environmental and biological controls of bivalve shell minerology and structure pp. 69–115 In: Skeletal growth of aquatic organisms, (Ed. by D. C. Rhoads and R. A. Lutz) New York: Plenum 1980

  5. Currey, J. D.: Mechanical properties of mother of pearl in tension. Proc. R. Soc. Lond. B196, 443–463 (1977)

  6. Currey, J. D. and J. D. Taylor: The mechanical behavior of some molluscan hard tissues. J. Zool. (Lond.) 173, 395–406 (1974)

  7. Dame, R. F.: The ecological energies of growth, respiration and assimilation in the American oyster, Crassostrea virginica. Mar. Biol. 17, 243–250 (1972)

  8. Degens, E. T., D. W. Spencer and R. H. Parker: Paleobiochemistry of molluscan shell proteins. Comp. Biochem. Physiol. 20, 553–579 (1967)

  9. Dixon, D. R.: The energetics of tube production by Mercierella enigmata. J. mar. biol. Ass. UK. 60, 655–659 (1980)

  10. Geller, J. B.: Microstructure of shell repair materials in Tegula funebralis (A. Adams, 1859). Veliger 25, 155–159 (1982)

  11. Griffiths, C. L. and J. A. King: Energy expended on growth and gonad output in the ribbed mussel Aulacomya ater. Mar. Biol. 53, 217–222 (1979)

  12. Hare, P. E. and P. H. Abelson: Amino Acid composition of some calcified proteins. Carnegie Inst. Wash. D. C., Yearbook 64, 223–231 (1965)

  13. Highsmith, R. C.: Coral growth rates and environmental control of density banding. J. exp. mar. Biol. Ecol. 37, 105–125 (1979)

  14. Hughes, R. N.: An energy budget for a tide-flat population of the bivalve Scrobicularia plana (Da Costa). J. Anim. Ecol. 39, 357–381 (1970)

  15. Kuenzler, E. J.: Structure and energy flow of a mussel population in a Georgia salt marsh. Limnol. Oceanogr 6, 191–204 (1961)

  16. Loosanoff, V. L. and C. A. Nomejko: Growth of oysters with damaged shell edges. Biol. Bull. Mar. biol. Lab., Woods Hole 108, 151–159 (1955)

  17. Loya, Y.: Skeletal regeneration in a Red Sea scleractinian coral population. Nature, Lond. 261, 490–491 (1976)

  18. Manahan, D. T., S. H. Wright, G. C. Stephens and M. A. Rice: Transport of dissolved amino acids by the mussel, Mytilus edulis: demonstration of net uptake from natural seawater. Science, N.Y. 215, 1253–1255 (1982)

  19. Meenakshi, V. R., P. L. Blackwelder and K. M. Wilbur: An ultrastructural study of shell regeneration in Mytilus edulis (Mollusca: Bivalvia). J. Zool. (Lond.) 171, 475–484 (1973)

  20. Meenakshi, V. R., A. W. Martin and K. M. Wilbur: Shell repair in Nautilus macromphalus. Mar. Biol. 27, 27–35 (1974)

  21. Mohlenberg, F. and T. Kiorboe: Growth and energetics in Spisula subtruncata (Da Costa) and the effect of suspended bottom material. Ophelia 20, 79–90 (1981)

  22. Nakahara, H., M. Kakei and G. Bevelander: Studies on the formation of the crossed lamellar structure in the shell of Strombus gigas. Veliger 23, 207–211 (1981)

  23. O'Neill, P. L.: Polycrystalline echinoderm calcite and its fracture mechanics. Science, N.Y. 213, 646–648 (1981)

  24. Paine, R. T.: Energy flow in a natural population of a herbivorous gastropod Tegula funebralis. Limnol. Oceanogr. 16, 86–98 (1971a)

  25. Paine, R. T.: The measurement and application of the calorie to ecological problems. Ann. Rev. Ecol. Syst. 2, 145–164 (1971b)

  26. Palmer, A. R.: Fish predation and the evolution of gastropod shell sculpture: experimental and geographic evidence. Evolution 33, 698–713 (1979)

  27. Palmer, A. R.: Do carbonate skeletons limit the rate of body growth? Nature, Lond. 292, 150–152 (1981)

  28. Palmer, A. R.: Growth in marine gastropods: a non-destructive technique for independently measuring shell and body weight. Malacologia 23, 63–73 (1982)

  29. Rachootin, S.: Zooxanthellae. pp. 852–854 In: Encyclopedia of paleontology. Ed. by R. W. Fairbridge and D. Jablonski. Stroudsburg: Dowden, Hutchinson and Ross 1979

  30. Rasmussen, E.: Systematics and ecology of the Isefjord marine fauna (Denmark). Ophelia 11, 1–507 (1973)

  31. Raup, D. M.. The endoskeleton, pp 379–395. In: Physiology of Echinodermata (Ed. by R. A. Boolootian). New York: Interscience 1966

  32. Rhoads, D. C. and R. A. Lutz (eds.) Skeletal growth of aquatic organisms, 750 pp (New York: Plenum Press) 1980

  33. Rodhouse, P. G.: A note on the energy budget for an oyster population in a temperate estuary. J. exp. mar. Biol. Ecol. 37, 205–212 (1979)

  34. Rosenberg, G. D.: An ontogenetic approach to the environmental significance of bivalve shell chemistry, pp 133–168. In: Skeletal growth of aquatic organisms. Ed. by D. C. Rhoads and R. A. Lutz. New York: Plenum 1980

  35. Simkiss, K.: Cellular aspects of calcification. pp 1–32. In: The mechanisms of mineralization in the invertebrates and plants. Ed. by N. Watabe and K. M. Wilbur. Columbia: University of South Carolina Press 1976

  36. Stickle, W. B. and B. Bayne: Effects of temperature and salinity on oxygen consumption and nitrogen excretion in Thais (Nucella) lapillus (L.). J. exp. mar. Biol. Ecol. 58, 1–17 (1982)

  37. Stickle, W. B. and F. G. Duerr: The effects of starvation on the respiration and major nutrient stores of Thais lamellosa. Comp. Biochem. Physiol. 33, 689–695 (1970)

  38. Taylor, J. D.: The structural evolution of the bivalve shell. Paleontology 16, 519–534 (1973)

  39. Taylor, J. D. and M. Layman: The mechanical properties of bivalve (Mollusca) shell structure. Paleontology 15, 73–87 (1972)

  40. Tsujii, T.: An electron microscopic study of the mantle epithelial cells of Anodonta sp. during shell regeneration, pp 339–353. In: The mechanisms of mineralization in invertebrates and plants. Ed. by N. Watabe and K. M. Wilbur, Columbia: Univ. S. Carol. Press 1976

  41. Vahl, O.: Energy transformations by the Icelandic scallop, Chlamys islandica (O. F. Muller), from 70oN. I The age-specific energy budget and net growth efficiency. J. exp. mar. Biol. Ecol 53, 281–296 (1981)

  42. Vermeij, J. G.: Biogeography and adaptation: patterns of marine life, 416 pp. Cambridge: Harvard University Press 1978

  43. Vincent, J. F. V.: Structural biomaterials, 206 pp. Toronto: Wiley and Sons 1982

  44. Vinogradov, A. P.: The elementary chemical composition of marine organisms. Mem. Sears Foundation mar. Res. 2, 1–647 (1953)

  45. Watabe, N. and K. M. Wilbur (eds.): The mechanisms of mineralization in invertebrates and plants. 461 pp. Columbia: University of S. Carolina Press 1976

  46. Wheeler, A. P., J. W. George and C. A. Evans: Control of calcium carbonate nucleation and crystal growth of soluble matrix of oyster shell. Science, N. Y. 212, 1397–1398 (1981)

  47. Wilbur, K. M.: Mineral regeneration in echinoderms and molluscs, pp 7–33. In: Symposium on hard tissue repair, growth and mineralization. London: CIBA Foundation 1973

  48. Williams, A. and A. J. Rowell: Evolution and phylogeny, pp H164-H198. In: Treatise on invertebrate paleontology. Ed. by R. C. Moore. Lawrence: University of Kansas Press 1965

  49. Wu, R. S. S. and C. D. Levings: An energy budget for individual barnacles (Balanus glandula). Mar. Biol. 45, 225–235 (1978)

Download references

Author information

Correspondence to A. R. Palmer.

Additional information

Communicated by R. O. Fournier, Halifax

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Palmer, A.R. Relative cost of producing skeletal organic matrix versus calcification: Evidence from marine gastropods. Mar. Biol. 75, 287–292 (1983). https://doi.org/10.1007/BF00406014

Download citation

Keywords

  • Calcium
  • Microstructure
  • Crystallization
  • Inverse Relationship
  • Calcium Carbonate