Cloning of the LYS5 gene encoding saccharopine dehydrogenase from the yeast Yarrowia lipolytica by target integration
Original Articles
Received:
Revised:
- 317 Downloads
- 87 Citations
Summary
A Yarrowia lipolytica yeast gene bank has been constructed in E. coli in an integrative plasmid vector containing the homologous LEU2 gene, and used to transform a leu2 lys5 yeast strain. The LYS5 gene encoding saccharopine dehydrogenase (SDH) has been rescued in E. coli from the chromosome of prototrophic transformants, in which the hybrid plasmid had integrated at the leu2 locus. Evidence that the rescued clone contains the LYS5 gene comes from complementation tests, genetic crosses, and SDH assay. Further characterization of the gene has been achieved by deletion mapping and subcloning, and by demonstrating the presence of transcripts hybridizing to this sequence.
Key words
Yarrowia lipolytica Targeted integration Saccharopine dehydrogenase (SDH) LYS5 gene Gene cloningPreview
Unable to display preview. Download preview PDF.
References
- Beckerich JM, Fournier P, Gaillardin C, Heslot H, Rochet M, Treton B (1984) In: Ball C (ed) Genetics and breeding of industrial microorganisms. CRC Press, Boca Raton, Florida, p 115–157Google Scholar
- Bhattacharjee JK (1985) CRC Crit Rev Microbiol 12:131–151Google Scholar
- Clarke L, Carbon J (1976) Cell 9:91–99Google Scholar
- Davidow LS, Apostolakos D, O'Donnell MM, Proctor AR, Ogrydziak DM, Wing RA, Stasko I, De Zeeuw JR (1985) Curr Genet 10:39–48Google Scholar
- Davidow LS, O'Donnell MM, Kaczmarek FS, Pereira DA, De Zeeuw JR, Franke AE (1987) J Bacteriol 169:4621–4629Google Scholar
- Fujioka M (1975) J Biol Chem 250:8986–8989Google Scholar
- Fujioka M, Nakatani Y (1972) Fur J Biochem 25:301–307Google Scholar
- Gaillardin CM, Heslot H (1979) Mol Gen Genet 172:185–192Google Scholar
- Gaillardin CM, Ribet AM (1987) Curr Genet 11:369–375Google Scholar
- Gaillardin CM, Poirier L, Heslot H (1976) Biochim Biophys Acta 422:390–406Google Scholar
- Gaillardin CM, Poirier L, Ribet AM, Heslot H (1979) Biochimie 61:473–482Google Scholar
- Gaillardin CM, Ribet AM, Heslot H (1982) Eur J Biochem 128:489–494Google Scholar
- Gaillardin CM, Ribet AM, Heslot H (1985) Curr Genet 10:49–58Google Scholar
- Heslot H, Gaillardin CM, Beckerich JM, Fournier P (1979) In: Sebek OK, Laskin AL (eds) Genetics of industrial microorganisms. Washington, DC, Am Soc Microbiol, pp 54–60Google Scholar
- Ito H, Fukuda Y, Murata K, Kimura A (1983) J Bacteriol 153:163–168Google Scholar
- Maniatis T, Fritch EF, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
- Ogawa H, Fujioka M (1978) J Biol Chem 253:3666–3670Google Scholar
- Schmidt H, Bode R, Lindner M, Birnbaum (1985) J Basic Microbiol 25:675–681Google Scholar
- Sherman F, Fink GR, Hicks JB (1986) Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
- Simms PC, Ogrydziak DM (1981) J Bacteriol 244:5597–5607Google Scholar
- Williams JG, Mason PJ (1985) In: Hames BD, Higgings SJ (eds) Nucleic acid hybridisation. IRL Press, Washington DC, pp 139–160Google Scholar
- Wing RA, Ogrydziak DM (1985) In: Timberlake WE (ed) Molecular genetics of filamentous fungi. Liss, New York, p 367–381Google Scholar
- Xuan JW, Kuang DR (1986) Acta Genet Sin 13:163–171Google Scholar
Copyright information
© Springer-Verlag 1988