Order

, Volume 13, Issue 4, pp 339–350

Simultaneous representation of interval and interval-containment orders

  • Paul J. Tanenbaum
Article
  • 46 Downloads

Abstract

We characterize the polysemic interval pairs—pairs of posets that admit simultaneous interval and interval-containment representations—and present algorithms to recoginze them and construct polysemic interval representations.

Mathematics Subject Classifications (1991)

06A07 68U05 

Key words

polysemy interval orders interval containment orders 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dushnik, B. and Miller, E. W. (1941) Partially ordered sets, Amer. J. Math. 63, 600–610.Google Scholar
  2. 2.
    Even, S. and Itai, A. (1971) Queues, Stacks and Graphs, in Theory of Machines and Computations, Z.Kohavi and A.Paz (eds), Academic Press, New York, pp. 71–86.Google Scholar
  3. 3.
    Fishburn, P. C. (1985) Interval Orders and Interval Graphs.: A Study of partially Ordered Sets, John Wiley, New York.Google Scholar
  4. 4.
    Golumbic, M. C. (1980) Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York.Google Scholar
  5. 5.
    Golumbic, M. C. and Shamir, R. (1993) Complexity and algorithms for reasoning about time: A graph theoretic approach, J. Assoc. Comput. Mach. 40(5), 1108–1133.Google Scholar
  6. 6.
    Kendall, D. G. (1969) Incidence matrices, interval graphs, and seriation in archaeology, Pacific J. Math. 28, 565–570.Google Scholar
  7. 7.
    Nökel, K. (1991) Temporally Distributed Symptoms in Technical Diagnosis, Lecture Notes in Artificial Intelligence, no. 517, Springer-Verlag, New York.Google Scholar
  8. 8.
    Papadimitriou, C. and Yannakakis, M. (1979) Scheduling interval ordered tasks, SIAM J. Comput. 8, 405–409.Google Scholar
  9. 9.
    Tanenbaum, P. J. (1995) On geometric representations of partially ordered sets Ph.D. Thesis, The Johns Hopkins University.Google Scholar
  10. 10.
    Tanenbaum, P. J. and Whitesides, S. (1996) Simultaneous dominance representation of multiple posets, Order 13, 351–364 (this issue).Google Scholar
  11. 11.
    Wiener, N. (1914) A contribution to the theory of relative position, Proc. Cambridge Philos. Soc. 17, 441–449.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Paul J. Tanenbaum
    • 1
  1. 1.U.S. Army Research LaboratoryAberdeen Proving GroundUSA

Personalised recommendations