Archives of Microbiology

, Volume 119, Issue 3, pp 231–235 | Cite as

Metabolite concentrations in Alcaligenes eutrophus H 16 and a mutant defective in poly-β-hydroxybutyrate synthesis

  • Alasdair M. Cook
  • Hans G. Schlegel
Article

Abstract

Intracellular concentrations of hexose phosphates, phosphoenolpyruvate, pyruvate, NAD(H) and NADP(H) as well as the protein and poly-β-hydroxybutyrate (PHB) content were measured in suspensions of autotrophically grown cells of Alcaligenes eutrophus H 16 and compared with those in a mutant unable to synthesize poly-β-hydroxybutyrate. The parent strain was subjected to successive changes in conditions, and new steady states were rapidly (≃20 min) attained. When the parent strain was provided with carbon and energy but no nitrogen source, it fixed CO2 and accumulated large amounts of PHB. When the mutant PHB-4 was exposed to identical conditions, no accumulation of PHB occurred, but pyruvate, malate and citrate were excreted, and a 6-fold accumulation of hexose monophosphate (over the levels in the parent) was observed: in contrast, cofactors in intermediates between fructose-1,6-phosphate and phosphoenolpyruvate reached steady state as in the parent strain. When ammonium ion was then supplied, growth started and the metabolite concentrations in the mutant returned to the levels observed in the parent strain.

Key words

Metabolite concentrations in bacteria Alcaligenes eutrophus H 16 Control of intermediary metabolism Poly-β-hydroxybutyrate deficient mutants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bowien, B., Cook, A. M., Schlegel, H. G.: Evidence for the in vivo regulation of glucose-6-phosphate dehydrogenase activity in Hydrogenomonas eutropha H 16 from measurements of the intracellular concentrations of metabolic intermediates. Arch. Microbiol. 97, 273–281 (1974)Google Scholar
  2. Cook, A. M., Urban, E., Schlegel, H. G.: Measuring the concentrations of metabolites in bacteria. Anal. Biochem. 72, 191–201 (1976)Google Scholar
  3. Decker, K., Pfitzer, S.: Determination of steady-state concentrations of adenine nucleotides in growing C. kluyveri cells by biosynthetic labeling. Anal. Biochem. 50, 529–539 (1972)Google Scholar
  4. Harrison, D. E. F.: Undamped oscillations occurring in continuous cultures of bacteria. In: Biological and biochemical oscillators (B. Chance, E. K. Pye, A. K. Ghosh, B. Hess, eds.), pp. 399–410. New York-London: Academic Press 1973Google Scholar
  5. Hess, B., Bioteaux, A.: Oscillatory phenomena in biochemistry. Ann. Rev. Biochem. 40, 237–258 (1971)Google Scholar
  6. Jüttner, R.-R., Lafferty, R. M., Knackmuss, H.-J.: A simple method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. 1, 233–237 (1975)Google Scholar
  7. Kennedy, S. I. T., Fewson, C. A.: Enzymes of the mandelate pathway in bacterium N. C. I. B. 8250. Biochem. J. 107, 497–506 (1968)Google Scholar
  8. Krebs, H. A.: The role of chemical equilibria in organ function. Adv. Enzyme Regul. 13, 449–472 (1975)Google Scholar
  9. Lowry, O. H., Carter, J., Ward, J. B., Glaser, L.: The effect of carbon and nitrogen sources on the level of metabolic intermediates in Escherichia coli. J. Biol. Chem. 246, 6511–6521 (1971)Google Scholar
  10. Oeding, V.: Regulation des Poly-β-hydroxybuttersäure-Stoffwechsels bei Hydrogenomonas eutropha Stamm H 16 und PHBS-freie Mutanten. Thesis, Univ. Göttingen (1972)Google Scholar
  11. Schlegel, H. G., Bartha, R.: “Leerlaul”-H2-Oxydation und “Rückkoppelung” bei Knallgasbakterien. Naturwissenschaften 48, 414–415 (1961)Google Scholar
  12. Schlegel, H. G., Gottschalk, G., Bartha, R.: Formation and utilization of poly-β-hydroxybutyric acid by Knallgasbacteria (Hydrogenomonas). Nature 191, 463–465 (1961)Google Scholar
  13. Swedes, J. S., Sedo, R. J., Atkinson, D. E.: Regulation of growth and protein synthesis to the adenylate energy charge in an adeninerequiring mutant of Escherichia coli. J. Biol. Chem. 250, 6930–6938 (1975)Google Scholar
  14. Vollbrecht, D., El-Nawawy, M. A., Schlegel, H. G.: Excretion of metabolites by hydrogen bacteria. I. Autotrophic and heterotrophic fermentations. Eur. J. Appl. Microbiol. (in press)Google Scholar
  15. Vollbrecht, D., Schlegel, H. G.: Excretion of metabolites by hydrogen bacteria. II. Influences of aeration, pH, temperature and age of cells. Eur. J. Appl. Microbiol. (in press)Google Scholar
  16. Williamson, J. R.: Calculation of metabolic concentrations in the cytosol and mitochondria of rat liver. In: Round table discussion on energy level and metabolic control in mitochondria (S. Papa, J. M. Tager, E. Quagliarieller, E. C. Slater, eds.), pp. 385–400. Bari: Adriatica Editrice 1969Google Scholar
  17. Williamson, D. H., Brosnan, J. T.: Metabolit-Gehalte tierischer Gewebe. In: Methoden der enzymatischen Analyse, Bd. II, 3. Aufl. (H. U. Bergmeyer, Hrsg.), S. 2317–2353. Weinheim: Verlag Chemie 1974Google Scholar
  18. Williamson, J. R., Corkey, B. E.: Assays of intermediates of the citric acid cycle and related compounds by fluorometric enzyme methods. In: Methods in enzymology, Vol. 13 (J. M. Lowenstein, ed.), pp. 434–513. New York-London: Academic Press 1969Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Alasdair M. Cook
    • 1
  • Hans G. Schlegel
    • 1
  1. 1.Institut für Mikrobiologie der Gesellschaft für Strahlen- und Umweltforschung mbH, MünchenGöttingenFederal Republic of Germany

Personalised recommendations