Advertisement

Studia Logica

, Volume 38, Issue 3, pp 247–262 | Cite as

On two problems of Harvey Friedman

  • Tadeusz Prucnal
Article

Abstract

The paper considers certain properties of intermediate and moda propositional logics.

The first part contains a proof of the theorem stating that each intermediate logic is closed under the Kreisel-Putnam rule ∼x→y∨z/(∼x→y)∨(∼x→z).

The second part includes a proof of the theorem ensuring existence of a greatest structurally complete intermediate logic having the disjunction property. This theorem confirms H. Friedman's conjecture 41 (cf. [2], problem 41).

In the third part the reader will find a criterion which allows us to obtain sets satisfying the conditions of Friedman's problem 42, on the basis of intermediate logics satisfying the conditions of problem 41.

Finally, the fourth part contains a proof of a criterion which allows us to obtain modal logics endowed with Hallden's property on the basis of structurally complete intermediate logics having the disjunction property.

Keywords

Mathematical Logic Modal Logic Computational Linguistic Propositional Logic Fourth Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Asser, Einführung in die Mathematische Logik, Teil I, Leipzig 1959.Google Scholar
  2. [2]
    H. Friedman, One hundred and two problems in mathematical logic, Journal of Symbolic Logic 40 (1975), pp. 113–129.Google Scholar
  3. [3]
    V. Glivenko, Sur quelques points de la logique de M. Brouwer, Bulletin de la Société Mathématique de Belgique, Ser. 5, 15 (1929), pp. 183–188.Google Scholar
  4. [4]
    R. Harrop, Concerning formulas of the type A→B ∨ C, A→(Ex) B (x) in intuitionistic formal systems, Journal of Symbolic Logic 25 (1960), pp. 27–32.Google Scholar
  5. [5]
    S. C. Kleene, Disjunction and existence under implication in elementary intuitionistic formalisms, Journal of Symbolic Logic 27 (1962), pp. 11–18.Google Scholar
  6. [6]
    G. Kreisel and H. Putnam, Eine Unableitbarkeits-beweismethode für den intuitionistischen Aussagenkalkül, Archiv für Mathematische Logik und Glundlagenforschung 3 (1957), pp. 74–78.Google Scholar
  7. [7]
    E. Lemmon, A note on Hallden incompletenes, Notre Dame Journal of Formal Logic 7 (1966), pp. 296–300.Google Scholar
  8. [8]
    L. A. Levin, Some syntactic theorems on the calculus of Medvedev's finite problems, Doklady Akademii Nauk SSSR, Vol. 185, (1969), pp. 32–33.Google Scholar
  9. [9]
    J. C. C. McKinsey, Systems of modal logics which are not unreasonable in the sense of Hallden, Journal of Symbolic Logic 18 (1953), pp. 109–113.Google Scholar
  10. [10]
    J. C. C. McKinsey and A. Tarski, Some theorems about the sentential calculi of Lewis and Heyting, Journal of Symbolic Logic 13 (1948), pp. 1–15.Google Scholar
  11. [11]
    Ú. T. Medvedev, Intérprétaciá logičeskih formul posrédstwam finitnych zadač i sváz' éé s téoréj réalizuémosti, Doklady Akademii Nauk SSSR, Vol. 148 (1963), pp. 771–774.Google Scholar
  12. [12]
    W. A. Pogorzelski, Structural completeness of the propositional calculus, Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques et Physiques 19 (1971), pp. 349–351.Google Scholar
  13. [13]
    T. Prucnal, Structural completeness and the disjunction property of intermediate logics, Bulletin of the Section of Logic 4 (1975), pp. 72–73, (abstract).Google Scholar
  14. [14]
    T. Prucnal, Structural completeness of Medvedev's propositional calculus, Reports on Mathematical Logic 6 (1976), pp. 103–105.Google Scholar
  15. [15]
    T. Prucnal, Dowód niezawodności reguly Kreisel'a-Putnama, (A proof of the validity of the Kreisel-Putnam's rule, in Polish) Praca zbiorowa “Matematyka”, zbiór artykułów, WSP Kielce, 1977, pp. 3–6.Google Scholar
  16. [16]
    T. Prucnal, On Friedman's problem in mathematical logic, Bulletin of the Section of Logic 7 (1978), pp. 137–142, (abstract).Google Scholar
  17. [17]
    H. Rasiowa, An Algebraic Approach to Non-Classical Logic, North-Holland Publishing Company, Amsterdam. PWN-Polish Scientific Publishers, Warszawa 1974.Google Scholar
  18. [18]
    H. Rasiowa and R. Sikorski, The Mathematics of Metamathematics. PWN Warszawa 1963.Google Scholar
  19. [19]
    R. Suszko, Konsekwencje inwariantne, (Invariant consequences, in Polish) Proceedings of the Autumn Logic SchoolMiedzygórze 1977, (preprint).Google Scholar
  20. [20]
    R. Wójcicki, Matrix approach in methodology of sentential calculi, Studia Logica 32 (1973), pp. 7–37.Google Scholar
  21. [21]
    A. Wroński, Remarks on Hallden completeness of modal and intermediate logics, Bulletin of the Section of Logic 5 (1976), pp. 126–129.Google Scholar
  22. [22]
    J. Łukasiewicz and A. Tarski, Untersuchungen über den Aussagenkalkül, Comptes Rendus de la Société Sciences et des Lettres de Varsovie, Cl. III., 23 (1930).Google Scholar

Copyright information

© Polish Academy of Sciences 1979

Authors and Affiliations

  • Tadeusz Prucnal
    • 1
  1. 1.Institute of MathematicsPedagogical CollegeKielcePoland

Personalised recommendations