Advertisement

Contributions to Mineralogy and Petrology

, Volume 57, Issue 2, pp 187–213 | Cite as

An experimental investigation of olivine morphology

  • Colin H. Donaldson
Article

Abstract

Olivine crystals can adopt ten types of shape. Experimental crystallization of eight rock melts shows that there is a systematic change from polyhedral or granular olivines → hopper olivines → branching olivines → randomly oriented chain olivines → parallel-growth chain olivines → chain+lattice olivines → plate or feather olivines, with increase in cooling rate and with increase in degree of supercooling. This sequence involves changes from complete to progressively less complete crystals and from equant habit to elongate bladed habit (c>ab) to tabular habit (acb). The sequence is not affected by the phase relations of the melt. The larger the olivine content of a melt the slower the cooling rate at which a particular olivine shape grows, whereas the lower the melt viscosity, the greater the cooling rate. Irrespective of the melt composition, comparable crystal shapes grow at the same degrees of supercooling. By comparison of the shapes of olivine crystals in experiments with those in rocks of similar composition, it is possible to deduce the cooling rate through the olivine crystallization interval and the approximate degree of supercooling at which the olivine crystals nucleated and grew in the rocks. The various shapes of skeletal olivines in many picrites, olivine-rich basalts and the Archaean “spinifex” rocks are not due to rapid cooling, but to rapid olivine growth caused by the high normative olivine content of the magma.

Keywords

Cool Rate Olivine Crystal Shape Picrite Olivine Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blander, M., Planner, H.N., Keil, K., Nelson, L.S., Richardson, N.L.: The origin of chondrules: Experimental investigation of metastable liquids in the system Mg2SiO4-SiO2. Geochim. Cosmochim. Acta (in press)Google Scholar
  2. Brooks, C., Hart, S.R.: On the significance of komatiite. Geology 2, 107–110 (1974)Google Scholar
  3. Bryan, W.B.: Morphology of quench crystals in submarine basalts. J. Geophys. Res. 77, 5812–5819 (1972)Google Scholar
  4. Donaldson, C.H.: Olivine crystal types in harrisitic rocks of the Rhum pluton and Archean spinifex rocks. Geol. Soc. Am. Bull. 85, 1721–1726 (1974)Google Scholar
  5. Donaldson, C.H.: Calculated diffusion coefficients and the growth rate of olivine in a basalt magma. Lithos 8, 163–174 (1975a)Google Scholar
  6. Donaldson, C.H.: A petrogenetic study of harrisite in the Isle of Rhum pluton, Scotland. Unpubl. Ph. D. thesis, Univ. St. Andrews (1975b)Google Scholar
  7. Donaldson, C.H.: Laboratory duplication of comb layering in the Rhum pluton. Mineral. Mag. (1977, in press)Google Scholar
  8. Donaldson, C.H., Brown, R.: Melt inclusions of high Ca, high Mg olivine tholeiite in chromites from the Mid-Atlantic Ridge. In preparationGoogle Scholar
  9. Donaldson, C.H., Usselman, T.M., Williams, R.J., Lofgren, G.E.: Experimental modeling of the cooling history of Apollo 12 olivine basalts. Proc. Lunar Sci. Conf. 6th. pp. 843–870 (1975)Google Scholar
  10. Donaldson, C.H., Williams, R.J., Lofgren, G.E.: A sample holding technique for study of crystal growth in silicate melts. Am. Mineralogist 60, 324–326 (1975)Google Scholar
  11. Drever, H.I., Johnston, R.: Crystal growth of forsteritic olivine in magmas and melts. Trans. Roy. Soc. (Edinburgh) 63, 289–315 (1957)Google Scholar
  12. Drever, H.I., Johnston, R.: A natural high-lime liquid more basic than basalt. J. Petrol. 7, 414–420 (1966)Google Scholar
  13. Eitel, W.: Silicate science, Vol. III. Dry silicate systems. New York: Academic Press 19Google Scholar
  14. Fleet, M.E.: The growth habits of olivine — a structural interpretation. Can. Mineralogist 13, 293–297 (1975)Google Scholar
  15. Fleet, M.E., MacRae, N.D.: A spinifex rock from Munro Township. Can. J. Earth Sci. 12, 928–939 (1975)Google Scholar
  16. Fouqué, F., Michel-Lévy, A.: Reproduction des basaltes d'melaphyres labradoriques, des diabases et dolerites à structure ophitique. Bull. Soc. Min. France 5, 277–279 (1881)Google Scholar
  17. Green, D.H., Nicholls, I.A., Viljoen, M., Viljoen, R.: Experimental demonstration of the existence of peridotitic liquids in earliest Archean magmatism. Geology 3, 11–14 (1975)Google Scholar
  18. Keith, H.D., Padden, F.J.: A phenomenological theory of spherulitic crystallization. J. Appl. Physics 34, 2409–2421 (1963)Google Scholar
  19. Kirkpatrick, R.J.: Crystal growth from the melt: A review. Am. Mineralogist 60, 798–814 (1975)Google Scholar
  20. Klein, L., Uhlmann, D.R.: Crystallization behaviour of anorthite. J. Geophys. Res. 79, 4869–4874 (1974)Google Scholar
  21. Lenarcic, J.: Über gegenseitige Löslichkeit und Ausscheidungsgefolge der Mineralien im Schmelzflusse. Zbl. Miner. Geol. Paläont. A, 743–751 (1903)Google Scholar
  22. Lewis, J.D.: “Spinifex texture” in a slag, as evidence for its origin in rocks. Western Australia Geol. Surv. Ann. Report, pp. 60–68 (1972)Google Scholar
  23. Lewis, J.D., Williams, I.R.: The petrology of an ultramafic lava near Murphy Well, Eastern Goldfields, Western Australia. Western Australia Geol. Surv. Ann. Report, pp. 60–68 (1974)Google Scholar
  24. Liou, J.G.: Mineralogy and chemistry of glassy basalts, Coastal Range ophiolites, Taiwan. Geol. Soc. Am. Bull. 85, 1–10 (1974)Google Scholar
  25. Lofgren, G.E.: An experimental study of plagioclase crystal morphology: isothermal crystallization. Am. J. Sci. 274, 243–273 (1974)Google Scholar
  26. Lofgren, G.E., Donaldson, C.H.: Curved branching crystals and differentiation in comb-layered rocks. Contrib. Mineral. Petrol. 49, 309–319 (1975)Google Scholar
  27. Lofgren, G.E., Donaldson, C.H., Usselman, T.M.: Geology, petrology and crystallization of Apollo 15 quartz-normative basalts. Proc. Lunar Sci. Conf. 6th, pp. 79–100 (1975)Google Scholar
  28. Lofgren, G.E., Donaldson, C.H., Williams, R.J., Mullins, O., Usselman, T.M.: Experimentally reproduced textures and mineral chemistry of Apollo 15 quartz-normative basalts. Proc. Lunar. Sci. Conf. 5th, pp. 549–568 (1974)Google Scholar
  29. Martin, R.F., MacLean, W.H.: Crystal growth forms in hawaiitic lavas of Heimay, Iceland. Geol. Soc. Am. Annual Meeting Abstracts 5, 726–727 (1973)Google Scholar
  30. Morozewicz, J.: Experimentelle Untersuchungen über die Bildung der Minerale in Magma. Mineral. Petrog. Mitt. 18, 177–197 (1899)Google Scholar
  31. Nesbit, R.W.: Skeletal crystal forms in the Yilgarn Block, Western Australia: Evidence for an Archean ultramafic liquid. Geol. Soc. Australia Spec. Publ. 3, 331–347 (1971)Google Scholar
  32. Portevin, A.: Le basalte fondu. Mem. Soc. Ing. Civ. France 4, 266–300 (1928)Google Scholar
  33. Preston, J.: A columnar crystallization of olivine and plagioclase. Geol. Mag. 100, 1–6 (1963)Google Scholar
  34. Pyke, D.R., Naldrett, A.J., Eckstrand, O.R.: Archean ultramafic flows in Munro Township, Ontario. Geol. Soc. Am. Bull. 84, 955–978 (1973)Google Scholar
  35. Saratovkin, D.D.: Dendritic crystallization. New York: Plenum 1959Google Scholar
  36. Shaw, H.R.: Viscosities of magmatic silicate liquids: An empirical method of prediction. Am. J. Sci. 272, 870–893 (1972)Google Scholar
  37. Turnbull, D.: Transient nucleation. Trans. AIME 175, 774–783 (1948)Google Scholar
  38. Usselman, T.M., Lofgren, G.E., Donaldson, C.H., Williams, R.J.: Experimentally reproduced textures and mineral chemistries of high-titanium mare basalts. Proc. Lunar Sci. Conf. 6th, pp. 997–1020 (1975)Google Scholar
  39. Viljoen, M.J., Viljoen, R.P.: Evidence for the existence of a mobile extrusive magma from the Komati formation of the Onverwacht Group. Geol. Soc. S. Africa Spec. Publ. 2, 87–112 (1969)Google Scholar
  40. Vogt, J.H.L.: Studier øm Slagger. Bih. Svensk. Vetensk. Akad. Handl. 9, 3–10 (1884)Google Scholar
  41. Wager, L.R., Brown, G.M.: Layered igneous rocks. Edinburgh: Oliver & Boyd 1968Google Scholar
  42. Walker, D., Kirkpatrick, R.J., Longhi, J., Hays, J.F.: Crystallization history and origin of lunar picritic basalt 12002: phase equilibria, cooling rate studies, and physical properties of the parent magma. Geol. Soc. Am. Bull. (in press)Google Scholar
  43. Williams, R.J., Mullins, O.: A system using solid ceramic oxygen electrolyte cells to measure oxygen fugacities in gas-mixing systems. NASA Technical Memorandum (1976)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Colin H. Donaldson
    • 1
    • 2
  1. 1.Department of GeologyUniversity of St. AndrewsScotland
  2. 2.Lunar Science InstituteHoustonUSA

Personalised recommendations