Antonie van Leeuwenhoek

, Volume 48, Issue 2, pp 105–130 | Cite as

The metabolic versatility of pseudomonads

  • Patricia H. Clarke
Biochemistry The Seventh A. J. Kluyver Memorial Lecture Delivered Before the Netherlands Society for Microbiology on November 19th, 1981, at the Universitaire Instelling Antwerpen, Wilrijk, Belgium


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bayly, R. C., Dagley, S. and Gibson, D. T. 1966. The metabolism of cresols by species of Pseudomonas. — Biochem, J. 101: 293–301.Google Scholar
  2. Berry, E. K. M., Allison, N. and Skinner, A. J. 1979. Degradation of the selective herbicide 2,2-dichloropropionate (Dalapon) by a soil bacterium. — J. Gen. Microbiol. 110: 39–45.Google Scholar
  3. Betz, J. L. and Clarke, P. H. 1972. Selective evolution of phenylacetamide-utilizing strains of Pseudomonas aeruginosa. — J. Gen. Microbiol. 73: 161–174.PubMedGoogle Scholar
  4. Betz, J. L. and Clarke, P. H. 1973. Growth of Pseudomonas species on phenylacetamide. — J. Gen. Microbiol. 75: 167–177.PubMedGoogle Scholar
  5. Brown, J. E., Brown, P. R. and Clarke, P. H. 1969. Butyramide-utilizing mutants of Pseudomonas aeruginosa 8602 which produce an amidase with altered substrate specificity. — J. Gen. Microbiol. 57: 273–285.PubMedGoogle Scholar
  6. Chakrabarty, A. M. 1976. Plasmids in Pseudomonas. — Annu. Rev. Genet. 10: 7–30.CrossRefPubMedGoogle Scholar
  7. Clarke, P. H. 1972. Biochemical and immunological comparison of aliphatic amidases produced by Pseudomonas species. — J. Gen. Microbiol. 71: 241–257.PubMedGoogle Scholar
  8. Clarke, P. H. 1978. Experiments in microbial evolution. p. 137–218. In L. N. Ornston and J. R. Sokatch (eds), The bacteria, Vol. VI. — Academic Press, New York.Google Scholar
  9. Clarke, P. H. and Ornston, L. N. 1875. Metabolic pathways and regulation. p. 191–340. In P. H. Clarke and M. H. Richmond (eds), Genetics and biochemistry of pseudomonads. — J. Wiley and Sons, London.Google Scholar
  10. Clarke, P. H., Drew, R. E., Tuberville, C., Brammar, W. J., Ambler, R. P. and Auffret, A. D. 1981. Alignment of cloned amiE gene of Pseudomonas aeruginosa with the N-terminal sequence of amidase. — Bioscience Reports, 1: 299–307.PubMedGoogle Scholar
  11. Dagley, S. 1971. Catabolism of aromatic compounds by microorganisms. — Adv. Microb. Physiol. 6: 1–46.PubMedGoogle Scholar
  12. Dagley, S., Evans, W. C. and Ribbons, D. W. 1960. New pathways in the oxidative metabolism of aromatic compounds by microorganisms. — Nature 188: 560–566.PubMedGoogle Scholar
  13. Davies, J. I. and Evans, W. C. 1964. Oxidative metabolism of naphthalene by soil pseudomonads. The ring-fission mechanism. — Biochem. J. 91: 251–261.PubMedGoogle Scholar
  14. Den Dooren De Jong, L. E. 1926. Bijdrage tot de kennis van het mineralisatie proces. — Nijgh and Van Ditmar, Rotterdam.Google Scholar
  15. Dorn, E. and Knackmuss, H.-J. 1978a. Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad. — Biochem. J. 174: 73–84.PubMedGoogle Scholar
  16. Dorn, E. and Knackmuss, H.-J. 1978b. Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. — Biochem. J. 174: 85–94.PubMedGoogle Scholar
  17. Drew, R. E., Clarke, P. H. and Brammar, W. J. 1980. The construction in vitro of derivatives of bacteriophage lambda carrying the amidase genes of Pseudomonas aeruginosa. — Molec. Gen. Genet. 177: 311–320.CrossRefPubMedGoogle Scholar
  18. Dunn, N. W. and Gunsalus, I. C. 1973. Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. — J. Bacteriol. 114: 974–979.PubMedGoogle Scholar
  19. Evans, W. C., Smith, B. W. S., Moss, P. and Fernley, H. N. 1971. Bacterial metabolism of 4-chlorophenoxyacetate. — Biochem. J. 122: 509–517.PubMedGoogle Scholar
  20. Farin, F. and Clarke, P. H. 1978. Positive regulation of amidase synthesis in Pseudomonas aeruginosa. — J. Bacteriol. 135: 379–392.PubMedGoogle Scholar
  21. Feist, C. F. and Hegeman, G. D. 1969. Phenol and benzoate metabolism by Pseudomonas putida: regulation of tangential pathways. — J. Bacteriol. 100: 869–877.PubMedGoogle Scholar
  22. Fewson, C. A. 1981. Biodegradation of aromatics with industrial relevance. In R. Hütter and T. Leisinger (eds), Microbial degradation of xenobiotics and related compounds. — Academic Press, London.Google Scholar
  23. Goldman, P. 1965. The enzymatic cleavage of the carbon-fluorine bond in fluoroacetate. — J. Biol. Chem. 240: 3434–3438.PubMedGoogle Scholar
  24. Goldman, P., Milne, G. W. A. and Keister, D. B. 1968. Carbon-halogen bond cleavage. III. Studies on bacterial halidohydrolases. — J. Biol. Chem. 243: 428–434.PubMedGoogle Scholar
  25. Hardman, D. J. and Slater, J. H. 1981. Dehalogenases in soil bacteria. — J. Gen. Microbiol. 123: 117–128.Google Scholar
  26. Hegeman, G. D. 1966. Synthesis of enzymes of the mandelate pathway by Pseudomonas putida. I. Synthesis of enzymes of the wild type. — J. Bacteriol. 91: 1140–1154.PubMedGoogle Scholar
  27. Holloway, B. W. 1978. Isolation and characterization of an R′ plasmid in Pseudomonas aeruginosa. — J. Bacteriol. 133: 1078–1082.PubMedGoogle Scholar
  28. Holloway, B. W., Krishnapillai, V. and Morgan, A. F. 1979. Chromosomal genetics of Pseudomonas. — Microbiol. Rev. 43: 73–102.PubMedGoogle Scholar
  29. Kearney, P. C., Kaufman, D. D. and Beall, M. L. 1964. Enzymatic dehalogenation of 2,2′-dichloropropionate. — Biochem. Biophys. Res. Commun. 14: 29–33.PubMedGoogle Scholar
  30. Kluyver, A. J. 1931. In The chemical activities of microorganisms. — University of London Press.Google Scholar
  31. Knackmuss, H.-J. 1981. Degradation of halogenated and sulfonated hydrocarbons. p. 000–000. In R. Hütter and T. Leisinger (eds), Microbial degradation of xenobiotics and related compounds. — Academic Press, London.Google Scholar
  32. Kunz, D. A. and Chapman, P. J. 1981. Catabolism of pseudocumene and 3-ethyltoluene by Pseudomonas putida (arvilla) mt-2: Evidence for new functions of the TOL (pWWO) plasmid. — J. Bacteriol. 146: 179–191.PubMedGoogle Scholar
  33. Little, M. and Williams, P. A. 1971. A bacterial halidohydrolase. Its purification, some properties and its modification by specific amino acid reagents. — Eur. J. Biochem. 21: 99–109.PubMedGoogle Scholar
  34. Morgan, A. F. 1982. Isolation and characterization of Pseudomonas aeruginosa R′ plasmids constructed by means of interspecific mating. — J. Bacteriol. (in press).Google Scholar
  35. Mylroie, J. T., Friello, D. A., Siemens, T. V. and Chakrabarty, A. M. 1977. Mapping of Pseudomonas putida chromosomal genes with a recombinant sex-factor plasmid. — Molec. Gen. Genet. 157: 231–237.CrossRefGoogle Scholar
  36. Ornston, L. N. 1966. The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. II. Enzymes of the protocatechuate pathway. III. Enzymes of the catechol pathway. IV. Regulation. — J. Biol. Chem. 241: II, 3787–3794; III, 3795–3799; IV, 3800–3810.PubMedGoogle Scholar
  37. Ornston, L. N. 1970. Regulation of catabolic pathways in Pseudomonas. — Bacterial Rev. 35: 87–116.Google Scholar
  38. Ornston, L. N. and Parke, D. 1977. The evolution of induction mechanisms in bacteria: Insights derived from the study of the β-ketoadipate pathway. — Curr. Top. Cell. Regul. 12: 209–262.PubMedGoogle Scholar
  39. Ornston, L. N. and Stanier, R. Y. 1966. The conversion of catechol and protocatchuate to β-ketoadipate by Pseudomonas putida. I. Biochemistry. — J. Biol. Chem. 241: 3776–3786.PubMedGoogle Scholar
  40. Palleroni, N. J. and Stanier, R. Y. 1964. Regulatory mechanisms governing synthesis of the enzymes for tryptophan oxidation by Pseudomonas fluorescens. — J. Gen. Microbiol. 35: 319–334.PubMedGoogle Scholar
  41. Paterson, A. and Clarke, P. H. 1979. Molecular basis of altered enzyme specificities in a family of mutant amidases from Pseudomonas aeruginosa. — J. Gen. Microbiol. 114: 75–85.PubMedGoogle Scholar
  42. Pemberton, J. M. and Fisher, P. R. 1977. 2,4-D plasmids and persistence. — Nature 268: 732–733.PubMedGoogle Scholar
  43. Rheinwald, J. G., Chakrabarty, A. M. and Gunsalus, I. C. 1973. A transmissible plasmid controlling camphor oxidation in Pseudomonas putida. — Proc. Natl. Acad. Sci. U.S.A. 70: 885–889.PubMedGoogle Scholar
  44. Royle, P. L., Matsumoto, H. and Holloway, B. W. 1981. Genetic circularity of the Pseudomonas aeruginosa PAO chromosome. — J. Bacteriol. 145: 145–155.PubMedGoogle Scholar
  45. Sala-Trepat, J. M., Murray, K. and Williams, P. A. 1972. The metabolic divergence in the meta cleavage of catechols by Pseudomonas putida NCIB 10015. — Eur. J. Biochem. 28: 347–356.PubMedGoogle Scholar
  46. Schmidt, E. and Knackmuss, H.-J. 1980. Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid. — Biochem. J. 192: 339–347.PubMedGoogle Scholar
  47. Senior, E., Bull, A. T. and Slater, J. H. 1976. Enzyme evolution in a microbial community growing on the herbicide Dalapon. — Nature 263: 476–479.PubMedGoogle Scholar
  48. Slater, J. H., Lovatt, D., Weightman, A. J., Senior, C. and Bull, A. T. 1979. The growth of Pseudomonas putida on chlorinated aliphatic acids and its dehalogenase activity. — J. Gen. Microbiol. 114: 125–136.Google Scholar
  49. Stanier, R. Y. and Ornston, L. N. 1973. The β-ketoadipate pathway. — Adv. Microb. Physiol. 9: 89–151.PubMedGoogle Scholar
  50. Stanier, R. Y., Palleroni, N. J. and Doudoroff, M. 1966. The aerobic pseudomonads: a taxonomic study. — J. Gen. Microbiol. 43: 159–271.PubMedGoogle Scholar
  51. Stephenson, M. 1947. Some aspects of hydrogen transfer. — Antonie van Leeuwenhoek 12: 33–48.Google Scholar
  52. Stephenson, M. 1949. p. 184–192. In Bacterial metabolism. 3rd Ed. — Longmans, London.Google Scholar
  53. Turberville, C. and Clarke, P. H. 1981. A mutant of Pseudomonas aeruginosa PAC with an altered amidase inducible by the novel substrate. — FEMS Microbiol. Lett. 10: 87–90.CrossRefGoogle Scholar
  54. Watson, J. M. and Holloway, B. W. 1978. Chromosome mapping in Pseudomonas aeruginosa PAT. — J. Bacteriol. 133: 1113–1125.PubMedGoogle Scholar
  55. Weightman, A. J., Slater, J. H. and Bull, A. T. 1979. The partial purification of two dehalogenases from Pseudomonas putida PP3. — FEMS Microbiol. Lett. 6: 231–234.CrossRefGoogle Scholar
  56. Weightman, A. J., Weightman, A. L. and Slater, J. H. 1982. Stereospecificity of 2-monochloro-propionate dehalogenation by the dehalogenases of Pseudomonas putida PP3: Evidence of two different dehalogenation mechanisms. — J. Gen. Microbiol. 128: (in press).Google Scholar
  57. Wigmore, G. J. and Ribbons, D. W. 1981. Selective enrichment of Pseudomonas spp. defective in catabolism after exposure to halogenated substrates. — J. Bacteriol. 146: 920–927.PubMedGoogle Scholar
  58. Williams, P. A. and Murray, K. 1974. Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: Evidence for the existence of a TOL plasmid. — J. Bacteriol. 120: 416–423.PubMedGoogle Scholar
  59. Worsey, M. J. and Williams, P. A. 1975. Metabolism of toluene and xylenes by Pseudomonas putida (arvilla) mt-2: Evidence for a new function of the TOL plasmid. — J. Bacteriol. 124: 7–13.PubMedGoogle Scholar

Copyright information

© H. Veenman & Zonen 1982

Authors and Affiliations

  • Patricia H. Clarke
    • 1
  1. 1.Department of BiochemistryUniversity College LondonLondonEngland

Personalised recommendations