Current Genetics

, Volume 10, Issue 10, pp 733–739

The cellular level of yeast ribosomal protein L25 is controlled principally by rapid degradation of excess protein

  • Tarek T. A. L. ElBaradi
  • Carine A. F. M. van der Sande
  • Willem H. Mager
  • Hendrik A. Raué
  • Rudi J. Planta
Original Articles

Summary

When the gene dosage for the primary rRNA-binding ribosomal protein L25 in yeast cells was raised about 50-fold, the level of mature L25 transcripts was found to increase almost proportionally. The plasmid-derived L25 transcripts were structurally indistinguishable from their genomic counterparts, freely entered polysomes in vivo and were fully translatable in a heterologous in vitro system. Nevertheless, pulse-labelling for periods varying from 3–20 min did not reveal a significant elevation of the intracellular level of L25 protein. When pulse-times were decreased to 10–45 s, however, we did detect a substantial over production of L25. We conclude that, despite the strong RNA-binding capacity of the protein, accumulation of L25 is not controlled by an autogenous (pre-)mRNA-targeted mechanism similar to that operating in bacteria, but rather by extremely rapid degradation of excess protein produced.

Key words

Yeast Ribosome synthesis Regulation Ribosomal protein turnover 

Abbreviations

rRNA

ribosomal RNA

r-protein

ribosomal protein

pre-mRNA

precursor mRNA

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abovich N, Gritz L, Tung L, Rosbash M (1985) Mol Cell Biol 5:3429–3435Google Scholar
  2. Beggs JD (1978) Nature (London) 275:104–109Google Scholar
  3. Bollen GHPM, Mager WH, Jenneskens LW, Planta RP (1980) Europ J Biochem 105:75–80Google Scholar
  4. Bollen GHPM, Molenaar CMT, Cohen LH, van Raamsdonk-Duin MMC, Mager WH, Planta RJ (1982) Gene 18:29–37Google Scholar
  5. Bromley S, Hereford L, Roshbash M (1982) Mol Cell Biol 2:1205–1211Google Scholar
  6. Davis RW, Thomas M, Cameron J, St John TP, Scherer S, Padgett RA (1980) Methods Enzymol 65:404–411Google Scholar
  7. Deckman IC, Draper DE (1985) Biochemistry 24:7860–7865Google Scholar
  8. ElBaradi TTAL, Raué HA, deRegt VCHF, Planta RJ (1984) Europ J Biochem 144:393–400Google Scholar
  9. ElBaradi TTAL, Raué HA, deRegt VCHF, Verbree EC, Planta RJ (1985) EMBO J 4:2201–2107Google Scholar
  10. Gorenstein C, Warner JR (1977) Mol Gen Genet 157:327–332Google Scholar
  11. Hardy SJS, Kurland CG, Voynow P, Mora G (1969) Biochemistry 8:2897–2905Google Scholar
  12. Himmelfarb HJ, Vassarotti A, Friesen JD (1984) Mol Gen Genet 195:500–506Google Scholar
  13. Huet J, Cottrelle P, Cool M, Vignais M-L, Thiele D, Marc C, Buhler J-M, Sentenac A, Fromageot P (1985) EMBO J 4:3539–3547Google Scholar
  14. Jacobs FA, Bird RC, Sells BH (1985) Europ J Biochem 150:255–263Google Scholar
  15. Kaltschmidt E, Wittmann MG (1970) Anal Biochem 36:401–412Google Scholar
  16. Kruiswijk T, Planta RJ (1974) Mol Biol Rep 1:409–415Google Scholar
  17. Kruiswijk T, Planta RJ, Krop JM (1979) Biochim Biophys Acta 517:378–389Google Scholar
  18. Leer RJ, van Raamsdonk-Duin MMC, Mager WH, Planta RJ (1984a) FEBS Lett 175:371–376Google Scholar
  19. Leer RJ, van Raamsdonk-Duin MMC, Hagendoorn MJM, Mager WH, Planta RJ (1984b) Nucleic Acids Res 12:6685–6700Google Scholar
  20. Leer RJ, van Raamsdonk-Duin MMC, Mager WH, Planta RJ (1985) Curr Genet 9:273–277Google Scholar
  21. Mager WH, Planta RJ (1976) Europ J Biochem 62:193–197Google Scholar
  22. Maniatis T, Fritsch FF, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  23. Messing J (1982) In: Setlow JK, Hollaender A (eds) Genetic engineering, principles and methods, vol 4. Plenum Press, New York, pp 19–34Google Scholar
  24. Mets L, Bogorad L (1974) Anal Biochem 57:200–210Google Scholar
  25. Molenaar CMT (1984) PhD Thesis. Vrije Universiteit, AmsterdamGoogle Scholar
  26. Nazar RN (1979) J Biol Chem 254:7724–7729Google Scholar
  27. Nazar RN, Wildeman AG (1983) Nucleic Acids Res 11:3155–3168Google Scholar
  28. Nomura M, Gourse R, Baughman G (1984) Annu Rev Biochem 53:57–117Google Scholar
  29. Pierandrei-Amaldi P, Beccari E, Bozzoni I, Amaldi F (1985) Cell 42:317–323Google Scholar
  30. Planta RJ, Mager WH (1982) In: Busch H, Rothblum L (eds) The cell nucleus, vol 12. Academic Press, New York London, pp 213–226Google Scholar
  31. Schaap PJ, Molenaar CMT, Mager WH, Planta RJ (1984) Curr Genet 9;47–52Google Scholar
  32. Shulman RW, Warner JR (1978) Mol Gen Genet 161:221–223Google Scholar
  33. Southern EM (1975) J Mol Biol 98:503–517Google Scholar
  34. Stoyanova BB, Hadjiolov AA (1979) Europ J Biochem 96:349–356Google Scholar
  35. Teem JL, Abovich N, Käufer NF, Schwindinger WF, Warner JR, Levy A, Woolford J, Leer RJ, van Raamsdonk-Duin MMC, Mager WH, Planta RJ, Schultz L, Friesen JD, Fried H, Rosbash M (1984) Nucleic Acids Res 12:8295–8312Google Scholar
  36. Udem SA, Warner JR (1972) J Mol Biol 65:227–242Google Scholar
  37. Waldron C, Jund R, Lacroute F (1974) FEBS Lett 46:11–16Google Scholar
  38. Warner JR (1982) In: Strathern JN, Jones EW, Breach JR (eds) The molecular biology of the yeast Saccharomyces cerevisiae. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 529–560Google Scholar
  39. Warner JR, Mitra G, Schwindinger WF, Student M, Fried HM (1985) Mol Cell Ciol 5:1512–1521Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Tarek T. A. L. ElBaradi
    • 1
  • Carine A. F. M. van der Sande
    • 1
  • Willem H. Mager
    • 1
  • Hendrik A. Raué
    • 1
  • Rudi J. Planta
    • 1
  1. 1.Biochemisch LaboratoriumVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations