, Volume 13, Issue 2, pp 145–160 | Cite as

Influencing the human indoleamine metabolism by means of a chlorinated amphetamine derivative with antidepressive action (p-Chloro-N-Methylamphetamine)

  • H. M. van Praag
  • J. Korf
  • F. van Woudenberg
  • T. P. Kits
Original Investigations


CMA (p-chloro-N-methylamphetamine) lowers the cerebral 5-HT concentration in test animals but has virtually no effect on the catecholamine concentrations. Moreover, this compound was found to behave in depressive patients like an antidepressive drug, not like a central stimulant of the amphetmine type. The study described was conducted in order to establish whether CMA influences the overall metabolism of indoleamines in man.

Such an influence was clearly demonstrable. Our findings are consistent with the hypothesis that CMA releases 5-HT from its depots. It has not been explained why a considerable proportion of the released 5-HT is excreted unchanged and why the increase in 5-HIAA excretion is so small: the overall activity of MAO was found not to be inhibited. No indications of abnormal 5-HT degradation were found at this time.

Patients with vital depressions who improved on CMA medication showed a lower 5-HIAA excretion before treatment than did patients who were refractory to CMA treatment. This is consistent with earlier observations. The possible cause of this phenomenon is discussed. Among the various possibilities considered, an abnormal 5-HT metabolism is regarded as the most plausible. Pertinent investigations are being continued.


Indoleamine Metabolism Psychopharmacology Antidepressive Drugs Amphetamine Derivatives (Chlorinated) Depression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beckett, A. H., M. Rowland, and P. Turner: Influence of urinary PH on excretion of amphetamine. Lancet 1965 I, 303–305.CrossRefGoogle Scholar
  2. Coppen, A.: The biochemistry of affective disorders. Brit. J. Psychiat. 113, 1237 to 1264 (1967).Google Scholar
  3. Davis, V. E., J. A. Huff, and H. Brown: Free and conjugated serotonin excretion in carcinoid syndrome. J. Lab. clin. Med. 66, 390–402 (1965).PubMedGoogle Scholar
  4. De Jonge, H.: Introduction to medical statistics. Proceedings of the Dutch Institute for Preventive Medicine, Leiden, 1963.Google Scholar
  5. Delorme, F., J. L. Froment et M. Jouvet: Suppression du sommeil par la p. chlorométhamphétamine et la p. chlorophénylalanine. C. R. Soc. Biol. (Paris) 160, 2347–2351 (1966).Google Scholar
  6. Erspamer, V.: Occurrence of indolealkylamines in nature. In: 5-Hydroxytryptamine and related indolealkylamines, pp. 132–181 (Ed.: V. Erspamer). Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  7. —, and C. Ciceri: Action of reserpine on the 5-hydroxytryptamine (enteramine) biosynthesis and metabolism in dogs and rats. Experientia (Basel) 13, 87–88 (1957).Google Scholar
  8. Feldstein, A., H. Hoagland, K. K. Wong, M. R. Oktem, and H. Freeman: MAO activity in relation to depression. Amer. J. Psychiat. 120, 1192–1194 (1964a).PubMedGoogle Scholar
  9. —, K. K. Wong, and H. Freemann: The metabolism of serotonin administered by the intramuscular and intravenous routes in normal subjects and chronic schizophrenic patients. J. Psychiat. Res. 2, 41–49 (1964).CrossRefGoogle Scholar
  10. Glowinsky, J., and J. Axelrod: Effects of drugs on the disposition of H3-nore-pinephrine in the rat brain. Pharmacol. Rev. 18, 775–786 (1966).PubMedGoogle Scholar
  11. Hanson, A.: Chemical analysis of indolealkylamines and related compounds, pp. 66–112. (Ed.: V. Erspamer). Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  12. Haškovec, L., and K. Ryšánek: The action of reserpine in imipramine-resistant depressive patients. Clinical and biochemical study. Psychopharmalogia (Berl.) 11, 18–30 (1967).Google Scholar
  13. Jouvet, M., P. Bobillier, J. F. Pujol et J. Renault: Effects des lésions du système du raphé sur le sommeil et la sérotonine cérébrale, C. R. Soc. Biol. (Paris) 2343–2346 (1966).Google Scholar
  14. Lippmann, W., and M. Wishnick: Effects of dl-p-chloro-N-methyl-amphetamine on the concentrations of monoamines in the cat and rat brain and rat heart, Life Sci. 4, 849–857 (1965).CrossRefGoogle Scholar
  15. Moore, K. E.: Toxicity and catecholamine releasing action of d-and 1-amphetamine in isolated and aggregated mice. J. Pharmacol. exp. Ther. 142, 6–12 (1963).PubMedGoogle Scholar
  16. Oates, J. A.: In methods in medical research, Vol. 9, ed. by J. H. Quastel. Chicago: Year Book Medical Publishers Inc. 1961.Google Scholar
  17. Paasonen, M. K., and N. J. Giarman: Brain levels of 5-hydroxytryptamine after various agents. Arch. int. Pharmacodyn. 114, 189–200 (1958).PubMedGoogle Scholar
  18. Pletscher, A., G. Bartholini, and M. da Prada: Metabolism of monoamines by blood platelets and relation to 5-hydroxytryptamine liberation. In: Mechanisms of release of biogenic amines, pp. 165–175 (Eds. U. S. von Euler, S. Rosell, and B. Uvnäs). London: Pergamon Press 1966.Google Scholar
  19. Pletscher, A., W.P. Burkard, H. Bruderer, and K. F. Gey: Decrease of cerebral 5-hydroxytryptamine and 5-hydroxyindoleacetic acid by an arylalkylamine. Life Sci. 828–833 (1963).Google Scholar
  20. —, M. da Prada, W. P. Burkard, G. Bartholini, P. A. Steiner, H. Bruderer, and F. Bigler: Aralkylamines with different effects on the metabolism of aromatic monoamines. J. Pharmacol. exp. Ther. 154, 64–72 (1966a).PubMedGoogle Scholar
  21. Praag, H. M. van: Antidepressants, catecholamines and 5-hydroxyindoles. Trends towards a more specific research in the field of antidepressants. Psychiat. Neurol. Neurochir. 70, 219–233 (1967).PubMedGoogle Scholar
  22. - T. P. Kits, D. Schut, and P. Dijkstra: An attempt at indirect evaluation of the noradrenaline hypothesis. Results of a pilot study of the antidepressive qualities of p-chloro-N-methylamphetamine. Int. J. Neuropsychiat. (In press 1968.)Google Scholar
  23. — and B. Leijnse: The influence of so-called monoamine-oxidase-inhibiting hydrazines on oral loading-tests with serotonin and 5-hydroxyindoleacetic acid. Psychopharmacologia (Berl.) 3, 202–203 (1962).Google Scholar
  24. — —: Die Bedeutung der Monoaminoxydasehemmung als antidepressives Prinzip. I. Psychopharmacologia (Berl.) 4, 1–14 (1963)Google Scholar
  25. — —: Die Bedeutung der Monoaminoxydasehemmung als antidepressives Prinzip. II. Psychopharmacologia (Berl.) 4, 91–102 (1963a).Google Scholar
  26. — —: Some aspects of the metabolism of glucose and of the non-esterified fatty acids in depressive patients. Psychopharmacologia (Berl.) 9, 220–233 (1966).Google Scholar
  27. —, A. M. Uleman, and J. C. Spitz: The vital syndrome interview. A structured standard interview for the recognition and registration of the vital depressive symptom complex. Psychiat. Neurol. Neurochir. 68, 329–346 (1965).PubMedGoogle Scholar
  28. Richter, D.: Tryptophan metabolism in mental illness. In: Amines and schizophrenia. Ed. by H.E. Himwich, S.S. Kety, and J.R. Smythies. London: Pergamon Press 1967.Google Scholar
  29. Shore, P. A., S. L. Silver, and B. B. Brodie: Interaction of reserpine, serotonin and lysergic acid diethylamide in the brain. Science 122, 284–285 (1955).PubMedGoogle Scholar
  30. Stacey, R. S.: 5-hydroxytryptamine and other pharmacologically active substances in the central nervous system. Acta physiol. pharmacol. neerl. 8, 222–239 (1959).PubMedGoogle Scholar
  31. Udenfriend, S., H. Weissbach, and B. B. Brodie: In methods of biochemical analysis, Vol. 6, Ed. by D. Guck. New York: Interscience Publishers 1958.Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • H. M. van Praag
    • 1
  • J. Korf
    • 1
  • F. van Woudenberg
    • 1
  • T. P. Kits
    • 1
  1. 1.Department of Biological Psychiatry and Central Isotope LaboratoryState UniversityGroningenThe Netherlands

Personalised recommendations