Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Propionate assimilation by methanogenic bacteria

Abstract

Methanobacterium thermoautotrophicum, Methanobrevibacter arboriphilus, and Methanosarcina barkeri were found to assimilate propionate when growing on media supplemented with this volatile fatty acid. [1-14C]propionate was almost exclusively incorporated into isoleucine, only C-2 of which became labelled. Assimilation of propionate by M. thermoautotrophicum was specifically inhibited by isoleucine, by 2-methylbutyrate, and by 2-oxobutyrate, whereas there was little or no effect by leucine, valine, butyrate, and acetate. This finding indicates that propionate assimilation is under regulatory control by intermediates and/or the product of isoleucine biosynthesis.

This is a preview of subscription content, log in to check access.

References

  1. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: Reevaluation of a unique biological group. Microbiol Rev 43:260–296

  2. Boone DR, Bryant MP (1980) Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 40:626–632

  3. Brandis A, Thauer RK, Stetter KO (1981) Relatedness of strains ΔH and Marburg of Methanobacterium thermoautotrophicum. Zbl Bakt Hyg I Abt Orig C2:311–317

  4. Bryant MP, Tzeng SF, Robinson IM, Joyner AE (1971) Nutrient requirements of methanogenic bacteria. Anaerobic biological treatment processes. Advances in Chemistry Series No. 105. Gould RF (ed). Washington DC, pp 23–40

  5. Buchanan BB (1969) Role of ferredoxin in the synthesis of α-ketobutyrate from propionyl coenzyme A and carbon dioxide by enzymes from photosynthetic and nonphotosynthetic bacteria. J Biol Chem 244:4218–4223

  6. Eikmanns B, Linder D, Thauer RK (1983) Unusual pathway of isoleucine biosynthesis in Methanobacterium thermoautotrophicum. Arch Microbiol 136:111–113

  7. Fuchs G, Stupperich E, Thauer RK (1978) Acetate assimilation and the synthesis of alanine, aspartate and glutamate in Methanobacterium thermoautotrophicum. Arch Microbiol 117:61–66

  8. Hippe H, Caspari D, Fiebig K, Gottschalk G (1979) Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri. Proc Natl Acad Sci USA 76:494–498

  9. Höllriegl V, Scherer P, Renz P (1983) Isolation and characterization of the Co-methyl and Co-aquo derivative of 5-hydroxybenzimidazolylcobamide (factor III) from Methanosarcina barkeri grown on methanol. FEBS Lett 151:156–158

  10. Hungate RE (1966) The rumen and its microbes. Academic Press, New York London

  11. Kristjansson JK, Schönheit P, Thauer RK (1982) Different K s values for hydrogen of methanogenic bacteria and sulfate reducing bacteria: An explanation for the apparent inhibition of methanogenesis by sulfate. Arch Micriobiol 131:278–282

  12. Kugelman IJ, Chin KK (1971) Toxicity, synergism and antagonism in anaerobic waste treatment processes. Anaerobic biological treatment processes. Advances in Chemistry Series 105. American Chemical Society, Washington DC, pp 55–90

  13. Laanbroek HJ, Veldkamp H (1982) Microbial interactions in sediment communities. Phil Trans R Soc Lond B 297:533–550

  14. Patel GB, Roth LA, van den Berg L, Clark DS (1976) Characterization of a strain of Methanospirillum hungatii. Can J Microbiol 22:1404–1410

  15. Roberts RB, Abelson PH, Cowie DB, Bolton ET, Brotton RJ (1957) Studies of biosynthesis in Escherichia coli. Carnegie Institute Washington

  16. Robinson IM, Allison MJ (1969) Isoleucine biosynthesis from 2-methylbutyric acid by anaerobic bacteria from the rumen. J Bacteriol 97: 1220–1226

  17. Sauer FD, Erfle JD, Mahadevan S (1975) Amino acid biosynthesis in mixed rumen cultures. Biochem J 150:357–372

  18. Scherer P, Sahm H (1979) Zuchtung von Methanosarcina barkeri auf Methanol oder Acetat in einem definierten Medium. 4. Symposium Technische Mikrobiologie, Berlin 1979

  19. Schönheit P, Moll J, Thauer RK (1980) Growth parameters (K s, µmax, Y s) of Methanobacterium thermoautotrophicun. Arch Microbiol 127: 59–65

  20. Stadtman TC (1967) Methane fermentation. Annu Rev Microbiol 21:121–142

  21. Stegemann H (1960) Bestimmung von Aminosäuren mit dithionitreduziertem Ninhydrin. Hoppe-Seyler's Z Physiol Chem 319:102–109

  22. Strassman M, Thomas AJ Locke LA, Weinhouse S (1955) The biosynthesis of isoleucine. J Am Chem Soc 78:228–232

  23. Taylor GT, Kelly DP, Pirt SJ (1976) Intermediary metabolism in methanogenic bacteria (Methaobacterium). Symposium on microbial production and utilization of gases (H2, CH4, CO). Schlegel HG, Gottschalk G, Pfennig N (eds). E. Goltze KG, Göttingen, pp 173–180

  24. Wegener WS, Reeves HC, Rabin R, Ajl SJ (1968) Alternate pathways of metabolism of short-chain fatty acids. Bacteriol Rev 32:1–26

  25. Weimer PJ, Zeikus JG (1979) Acetate assimilation pathway of Methanosarcina barkeri. J Bacteriol 137:332–339

  26. Whitman WB, Ankwanda E, Wolfe RS (1982) Nutrition and carbon metablism of Methanococcus voltae. J Bacteriol 149:852–863

  27. Zehnder AJB, Wuhrmann K (1977) Physiology of a Methanobacterium strain AZ. Arch Microbiol 111:199–205

Download references

Author information

Correspondence to Rudolf K. Thauer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eikmanns, B., Jaenchen, R. & Thauer, R.K. Propionate assimilation by methanogenic bacteria. Arch. Microbiol. 136, 106–110 (1983). https://doi.org/10.1007/BF00404782

Download citation

Key words

  • Propionate assimilation
  • Isoleucine biosynthesis
  • Methanogenic bacteria
  • Methanobacterium thermoautotrophicum
  • Methanobrevibacter arboriphilus
  • Methanosarcina barkeri
  • 2-Methylbutyrate assimilation
  • Regulation of isoleucine biosynthesis