A heuristic method to determine the number of pallets in a flexible manufacturing system with several pallet types

  • Philippe Solot


This article presents a new heuristic method, called PANORAMA, that enables the determination of an appropriate number of pallets of each type that should circulate in a flexible manufacturing system. Production and return-on-investment constraints are considered. Statistical results derived using data from three existing flexible manufacturing systems, as well as randomly generated data, demonstrate the accuracy of the heuristic proposed.

Key Words

FMS design multiple paliet types number of pallets queueing network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baskett, F., Chandy, K.M., Muntz, R.R., and Palacios, F.G., “Open, Closed, and Mixed Networks of Queues with Different Classes of Customers”, Journal of the Association for Computing Machinery, Vol. 22, No. 2, pp. 248–260 (April 1975).Google Scholar
  2. Bastos, J.M., “Batching and routing: Two Functions in the Operational Planning of FMS”, Research Report KLR 86-19 C, BBC Research Centre, Baden-Dättwil, Switzerland (October 1986).Google Scholar
  3. Bruell, S.C. and Balbo, G., Computational Algorithms for Closed Queueing Networks, Elsevier North Holland, Inc., New York, NY (1980).Google Scholar
  4. Dallery, Y., “Une Méthode Analytique pour l'Evaluation des Performances d'un Atelier Flexible”, Thèse de Docteur-Ingénieur, Institut National Polytechnique de Grenoble, Grenoble, France (1984).Google Scholar
  5. Dallery, Y. and Frein, Y., “An Efficient Method to Determine the Optimal Configuration of a Flexible Manufacturing System”, in Proceedings of the 2nd ORSA/TIMS Conference on Flexible Manufacturing Systems (Ann Arbor, MI), K.E. Stecke and R. Suri (Eds.), Elsevier, Amsterdam, pp. 269–282 (1986).Google Scholar
  6. DeLuca, A. and Perotto, G., “FMS Simulation: Advanced Mathematical Models and Fast Simulation Algorithms for System Optimization and Performance Evaluation”, Internal Report, EICAS Automazione S.p.A., Torino, Italy (1986).Google Scholar
  7. Frein, Y., Dallery, Y., Pierrat, J.J., and David, R., “Optimisation du Routage des Pièces dans un Atelier Flexible par des Méthodes Analytiques”, in Actes de la 2ème Conférence Internationale sur les Systèmes de Production (Paris, France), INRIA, Le Chesnay, France, pp. 283–297 (1987).Google Scholar
  8. Glover, F., “Tabu Search Methods in Artificial Intelligence and Operations Research”, ORSA Artificial Intelligence Newsletter, Vol. 1, No. 2, p. 6 (1987).Google Scholar
  9. Glover, F., “Tabu Search—Part I”, ORSA Journal on Computing, Vol. 1, No. 3, pp. 129–206 (1989).Google Scholar
  10. Glover, F., “Tabu Search—Part II”, ORSA Journal on Computing, to appear (1990).Google Scholar
  11. Hertz, A. and de Werra, D., “The Tabu Search Metaheuristic: How We Used It”, Annals of Mathematics and Artificial Intelligence, to appear (1990).Google Scholar
  12. Hildebrant, R.R., “Scheduling Flexible Machining Systems Using Mean Value Analysis”, in Proceedings of the IEEE Conference on Decision and Control (Albuquerque, New Mexico), pp. 701–706 (1980).Google Scholar
  13. Little, J.D.C., “A Proof of the Queueing Formula L=λW”, Operations Research, Vol. 9, No. 3, pp. 383–387 (May–June 1961).Google Scholar
  14. Solberg, J.J., “A Mathematical Model of Computerized Manufacturing Systems”, in Proceedings of the 4th International Conference on Production Research (Tokyo, Japan) (August 1977).Google Scholar
  15. Solberg, J.J., “CAN-Q User's Guide”, Report No. 9 (revised), School of Industrial Engineering, Purdue University, W. Lafayette, Indiana (1980).Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Philippe Solot
    • 1
  1. 1.Département de MathématiquesEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations