Antonie van Leeuwenhoek

, Volume 51, Issue 5–6, pp 473–494 | Cite as

Some reflections on microbial competitiveness among heterotrophic bacteria

  • Jan C. Gottschal
Ecology

Abstract

The results of a large number of studies on microorganisms subjected to various degrees of substrate limitation have led to the idea that many species are particularly well adapted to growth at a very low rate at extremely low nutrient concentrations. The possible similarity between this type of bacteria and oligotrophic species is discussed. Some attention is paid to the problem of predicting the competitiveness of microbial species. To this end the apparent specific affinity of an organism for a given substrate is discussed in some detail. It is attempted to bring terminology used in describing this parameter in line with that commonly used in microbial physiology and ecology. Using one particular field study as an example the possible usefulness and limitations of this concept in field studies are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akagi, Y., Taga, N. and Simidu, U. 1977. Isolation and distribution of oligotrophic marine bacteria. — Can. J. Microbiol. 23: 981–987.Google Scholar
  2. Bader, F. B. 1982. Kinetics of double-substrate limited growth. p. 1–32. In J. Bazin (ed.), Microbial Population Dynamics. — CRC Press, Inc., Boca Raton, Florida.Google Scholar
  3. Bazin, M. J., 1981. Theory of continuous culture. p. 27–62. In P. H. Calcott (ed.), Continuous Cultures of Cells, Vol. 1. — CRC Press, Inc., Boca Raton, Florida.Google Scholar
  4. Bungay III, H. R. and Bungay, M. L. 1968. Microbial interactions in continuous culture. — Adv. Appl. Microbiol. 10: 269–290.Google Scholar
  5. Button, D. K. 1978. On the theory of nutrient concentration control of microbial growth kinetics. — Deep-Sea Res. 25: 1163–1177.Google Scholar
  6. Button, D. K. 1983. Differences between the kinetics of nutrient uptake by micro-organisms, growth and enzyme kinetics. — Trends Biochem. Sci. 8: 121–124.Google Scholar
  7. Button, D. K., Robertson, B. R. and Craig, K. S. 1981. Dissolved hydrocarbons and related microflora in a fjordal seaport: sources, sinks, concentrations, and kinetics. — Appl. Environ. Microbiol 42: 708–719.Google Scholar
  8. Counotte, G. H. M. 1981. Regulation of lactate metabolism in the rumen. — Ph.D. Thesis, University of Utrecht.Google Scholar
  9. Dalton, H. 1979. Utilization of inorganic nitrogen by microbial cells. — Int. Rev. Biochem. 21:227–266.Google Scholar
  10. Dawes, E. A., Midgley, M. and Whiting, P. H. 1976. Control of transport systems for glucose, gluconate and 2-oxo-gluconate and of glucose metabolism in Pseudomonas aeruginosa. p. 195–207. In A. C. R. Dean, D. C. Ellwood, C. G. T. Evans and J. Melling (eds), Continuous Culture, Vol. 6, Applications and New Fields. — Ellis Horwood Ltd, Chichester.Google Scholar
  11. Dijkhuizen, L. and Harder, W. 1979. Regulation of autotrophic and heterotrophic metabolism in Pseudomonas oxalaticus OX1: growth on mixtures of acetate and formate in continuous culture. — Arch. Microbiol. 123: 47–53.Google Scholar
  12. Dykhuizen, D. and Davies, M. 1980. An experimental model: bacterial specialists and generalists competing in chemostats. — Ecology 61: 1213–1227.Google Scholar
  13. Egli, Th., Lindley, N. D. and Quayle, J. R. 1983. Regulation of enzyme synthesis and variation of residual methanol concentration during carbon-limited growth of Kloeckera sp. 2201 on mixtures of methanol and glucose — J. Gen. Microbiol. 129: 1269–1281.Google Scholar
  14. Esener, A. A., Roels, J. A. and Kossen, N. W. F. 1983. Bioengineering report. Theory and applications of unstructured growth models: kinetic and energetic aspects. — Biotechnol. Bioeng. 25: 2803–2841.Google Scholar
  15. Gottschal, J. C. 1986. Mixed substrate utilization by mixed cultures. In E. R. Leadbetter and J. S. Poindexter (eds), Bacteria in Nature. — Plenum Press, New York (in press).Google Scholar
  16. Gottschal, J. C., De Vries, S. and Kuenen, J. G. 1979. Competition between the facultatively chemolithotrophic Thiobacillus A2, an obligately chemolithotrophic Thiobacillus and a heterotrophic Spirillum for inorganic and organic substrates. — Arch. Microbiol. 121: 241–249.Google Scholar
  17. Gottschal, J. C. and Kuenen, J. G. 1980. Mixotrophic growth of Thiobacillus A2 on acetate and thiosulfate as growth limiting substrates in the chemostat. — Arch. Microbiol. 126: 33–42.Google Scholar
  18. Gottschal, J. C. and Thingstad, T. F. 1982. Mathematical description of competition between two and three bacterial species under dual substrate limitation in the chemostat: a comparison with experimental data. — Biotechnol. Bioeng. 24: 1403–1418.Google Scholar
  19. Harder, W. and Veldkamp, H. 1971. Competition of marine psychrophilic bacteria at low temperatures. — Antonie van Leeuwenhoek 37: 51–63.Google Scholar
  20. Harrison Jr, A. P. 1983. Genomic and physiological comparisons between heterotrophic thiobacilli and Acidiphilium cryptum, Thiobacillus versutus sp. nov., and Thiobacillus acidophilus nom. rev. — Int. J. Syst. Bacteriol. 33: 211–217.Google Scholar
  21. Healey, F. P. 1980. Slope of the Monod equation as an indicator of advantage in nutrient competition. — Microb. Ecol. 5: 281–286.Google Scholar
  22. Hugenholtz, J. and Veldkamp, H. 1985. Competition between different strains of Streptococcus cremoris. — FEMS Microbiol. Ecol. 31: 57–62.Google Scholar
  23. Hungate, R. E. 1966. The Rumen and its Microbes. — Academic Press Inc., New York.Google Scholar
  24. Huser, B. A. 1981. Methanbildung aus Acetat. Isolierung eines neuen Archaebakteriums. — Ph.D. Thesis, Eidgenössische Technische Hochschule, Zürich.Google Scholar
  25. Jannasch, H. W. 1967. Enrichments of aquatic bacteria in continuous culture. — Arch. Microbiol. 59: 165–173.Google Scholar
  26. Jannasch, H. W. 1968. Competitive elimination of Enterobacteriaceae from seawater. — Appl. Microbiol. 16: 1616–1618.Google Scholar
  27. Jannasch, H. W. and Mateles, R. I. 1974. Experimental bacterial ecology studied in continuous culture. — Adv. Microb. Physiol. 11: 165–212.Google Scholar
  28. Jones, J. G. 1982. Activities of aerobic and anaerobic bacteria in lake sediments and their effect on the water column. p. 107–145. In D. B. Nedwell and C. M. Brown (eds), Sediment Microbiology. — Academic Press, London.Google Scholar
  29. Kjelleberg, S. 1984. Effects of interfaces on survival mechanisms of copiotrophic bacteria in lownutrient habitats. p. 151–159. In M. J. Klug and C. A. Reddy (eds), Current Perspectives in Microbial Ecology. — American Society for Microbiology, Washington, D.C.Google Scholar
  30. Koch, A. L. 1971. The adaptive responses of Escherichia coli to a feast and famine existence. —Adv. Microb. Physiol. 6: 147–217.Google Scholar
  31. Koch, A. L. 1982. Multistep kinetics: choice of models for the growth of bacteria. — J. Theor. Biol. 98: 401–417.Google Scholar
  32. Kristjansson, J. K., Schönheit, P. and Thauer, R. K. 1982. Different K s values for hydrogen of methanogenic bacteria and sulfate reducing bacteria: an explanation for the apparent inhibition of methanogenesis by sulfate. — Arch. Microbiol. 131: 278–282.Google Scholar
  33. Kuenen, J. G., Boonstra, J., Schröder, H. G. J. and Veldkamp, H. 1977. Competition for inorganic substrates among chemoorganotrophic and chemolithotrophic bacteria. — Microb. Ecol. 3: 119–130.Google Scholar
  34. Kuenen, J. G. and Harder, W. 1982. Microbial competition in continuous culture. p. 342–367. In R. G. Burns and J. H. Slater (eds), Experimental Microbial Ecology. — Blackwell Sci. Publ., Oxford.Google Scholar
  35. Kuznetsov, S. I., Dubinina, G. A. and Lapteva, N. A. 1979. Biology of oligotrophic bacteria. — Annu. Rev. Microbiol. 33: 377–387.Google Scholar
  36. Laanbroek, H. J. 1978. Ecology and physiology of l-aspartate- and l-glutamate fermenting bacteria. — Ph.D. Thesis, University of Groningen.Google Scholar
  37. Laanbroek, H. J., Geerligs, H. J., Peijnenburg, A. A. C. M. and Siesling, J. 1983. Competition for l-lactate between Desulfovibrio, Veillonella, and Acetobacterium species isolated from anaerobic intertidal sediments. — Microb. Ecol. 9: 341–354.Google Scholar
  38. Laanbroek, H. J. Geerligs, H. J., Sijtsma, L. and Veldkamp, H. 1984. Competition for sulfate and ethanol among Desulfobacter, Desulfobulbus, and Desulfovibrio species isolated from intertidal sediments. — Appl. Environ. Microbiol. 47: 329–334.Google Scholar
  39. Law, A. T. and Button, D. K. 1977. Multiple-carbon-source-limited growth kinetics of a marine coryneform bacterium. — J. Bacteriol. 129: 115–123.Google Scholar
  40. Law, A. T., Robertson, B. R., Dunker, S. S. and Button, D. K. 1976. On describing microbial growth kinetics from continuous culture data: some general considerations, observations, and concepts. — Microb. Ecol. 2: 261–283.Google Scholar
  41. Lee, A. 1985. Neglected niches. The microbial ecology of the gastrointestinal tract. — Adv. Microb. Ecol. 8: 115–162.Google Scholar
  42. Lovley, D. R., Dwyer, D. F. and Klug, M. J. 1982. Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments. — Appl. Environ. Microbiol. 43: 1373–1379.Google Scholar
  43. Martin, P. and MacLeod, R. A. 1984. Observations on the distinction between oligotrophic and eutrophic marine bacteria. — Appl. Environ. Microbiol. 47: 1017–1022.Google Scholar
  44. Matin, A. and Veldkamp, H. 1978. Physiological basis of the selective advantage of a Spirillum sp. in a carbon-limited environment. — J. Gen. Microbiol. 105: 187–197.Google Scholar
  45. Monod, J. 1942. Recherches sur la Croissance des Cultures Bactériennes. — Hermann and Cie, Paris.Google Scholar
  46. Mur, L. R., Gons, H. J. and Van Liere, L. 1977. Some experiments on the competition between green algae and blue-green bacteria in light-limited environments. — FEMS Microbiol. Lett. 1: 335–338.Google Scholar
  47. Nedwell, D. B. 1984. The input and mineralization of organic carbon in anaerobic aquatic sediments. — Adv. Microb. Ecol. 7: 93–131.Google Scholar
  48. Neijssel, O. M., Hueting, S., Crabbendam, K. J. and Tempest, D. W. 1975. Dual pathways of glycerol assimilation in Klebsiella aerogenes NCIB 418. Their regulation and possible functional significance. — Arch. Microbiol. 104: 83–87.Google Scholar
  49. Oremland, R. S. and Polcin, S. 1982. Methanogenesis and sulfate reduction: competitive and non-competitive substrates in estuarine sediments. — Appl. Environ. Microbiol. 44: 1270–1276.Google Scholar
  50. Parkes, R. J. 1982. Methods for enriching, isolating, and analysing microbial communities in laboratory systems. p. 45–102. In A. T. Bull and J. H. Slater (eds), Microbial Interactions and Communities, Vol. 1. — Academic Press, London.Google Scholar
  51. Pirt, S. J. 1975. Principles of Microbe and Cell Cultivation. — Blackwell Sci. Publ., Oxford.Google Scholar
  52. Poindexter, J. S. 1981. Oligotrophy. Fast and famine existence. — Adv. Microb. Ecol. 5: 63–89.Google Scholar
  53. Powell, E. O. 1958. Criteria for the growth of contaminants and mutants in continuous culture. — J. Gen. Microbiol. 18: 259–268.Google Scholar
  54. Robinson, J. A. and Tiedje, J. M. 1982. Kinetics of hydrogen consumption by rumen fluid, anaerobic digestor sludge, and sediment. — Appl. Environ. Microbiol. 44: 1374–1384.Google Scholar
  55. Robinson, J. A. and Tiedje, J. M. 1984. Competition between sulfate-reducing and methanogenic bacteria for H2 under resting and growing conditions. — Arch. Microbiol. 137: 26–32.Google Scholar
  56. Schönheit, P., Kristjansson, J. K. and Thauer, R. K. 1982. Kinetic mechanism for the ability of sulfate reducers to out-compete methanogens for acetate. — Arch. Microbiol. 132: 285–288.Google Scholar
  57. Stotzky, G. and Burns, R. G. 1982. The soil environment: clay-humus-microbe interactions. p. 105–133. In R. G. Burns and J. H. Slater (eds), Experimental Microbial Ecology. — Blackwell Sci. Publ., Oxford.Google Scholar
  58. Strayer, R. F. and Tiedje, J. M. 1978. Kinetic parameters of the conversion of methane precursors to methane in a hypereutrophic lake sediment. — Appl. Environ. Microbiol. 36: 330–340.Google Scholar
  59. Tempest, D. W., Neijssel, O. M. and Zevenboom, W. 1983. Properties and performance of microorganisms in laboratory culture; their relevance to growth in natural ecosystems. p. 119–152. In J. H. Slater, R. Whittenbury and J. W. T. Wimpenny (eds), Microbes in their Natural Environments. Soc. Gen. Microbiol., Symp. 34. — Cambridge University Press, Cambridge.Google Scholar
  60. Tilman, D. 1982. Resource Competition and Community Structure. — Princeton University Press, Princeton.Google Scholar
  61. Tilman, D. and Kilham, S. S. 1976. Phosphate and silicate growth and uptake kinetics of the diatoms Asterionella formosa and Cyclotella meneghiniana in batch and semicontinuous culture. —J. Phycol. 12: 375–383.Google Scholar
  62. Van Es, F. B., Laanbroek, H. J. and Veldkamp, H. 1984. Microbial ecology: an overview. p. 1–33. In G. A. Codd (ed.), Aspects of Microbial Metabolism and Ecology. — Academic Press, London.Google Scholar
  63. Van Liere, L. 1979. On Oscillatoria agardhii Gomont, experimental ecology and physiology of a nuisance bloom-forming cyanobacterium. — Ph.D. Thesis, University of Amsterdam.Google Scholar
  64. Veldkamp, H. 1976. Mixed culture studies with the chemostat. p. 315–328. In A. C. R. Dean, D. C. Ellwood, C. G. T. Evans and J. Melling (eds), Continuous Culture, Vol. 6, Applications and New Fields. — Ellis Horwood Ltd, Chichester.Google Scholar
  65. Veldkamp, H. 1977. Ecological studies with the chemostat. — Adv. Microb. Ecol. 1: 59–94.Google Scholar
  66. Veldkamp, H., Van Gemerden, H., Harder, W. and Laanbroek, H. J. 1984. Microbial competition. Competition among bacteria: an overview. p. 279–290. In M. J. Klug and C. A. Reddy (eds), Current Perspectives in Microbial Ecology. — American Society for Microbiology, Washington, D.C.Google Scholar
  67. Wimpenny, J. W. T. 1981. Spatial order in microbial ecosystems. — Biol. Rev. 56: 295–342.Google Scholar
  68. Wimpenny, J. W. T., Lovitt, R. W. and Coombs, J. P. 1983. Laboratory model systems for the investigation of spatially and temporally organized microbial ecosystems. p. 67–117. In J. H. Slater, R. Whittenbury and J. W. T. Wimpenny (eds), Microbes in their Natural Environments. Soc. Gen. Microbiol., Symp. 34. — Cambridge University Press, Cambridge.Google Scholar
  69. Winfrey, M. R. and Ward, D. M. 1983. Substrates for sulfate reduction and methane production in intertidal sediments. — Appl. Environ. Microbiol. 45: 193–199.Google Scholar
  70. Yanagita, T., Ichikawa, T., Tsuji, T., Kamata, Y., Ito, K. and Sasaki, M. 1978. Two trophic groups of bacteria, oligotrophs and eutrophs: their distributions in fresh and sea water areas in the central northern Japan. — J. Gen. Appl. Microbiol. 24: 59–88.Google Scholar
  71. Zevenboom, W. 1980. Growth and nutrient uptake kinetics of Oscillatoria agardhii. — Ph.D. Thesis, University of Amsterdam.Google Scholar
  72. Zinder, S. H. and Brock, T. D. 1978. Methane, carbon dioxide, and hydrogen sulfide production from the terminal methiol group of methionine by anaerobic lake sediments. — Appl. Environ. Microbiol. 35: 344–352.Google Scholar
  73. ZoBell, C. E. and Grant, C. W. 1943. Bacterial utilization of low concentrations of organic matter. — J. Bacteriol. 45: 555–564.Google Scholar

Copyright information

© Drukkerij Veenman B.V. 1985

Authors and Affiliations

  • Jan C. Gottschal
    • 1
  1. 1.Department of MicrobiologyUniversity of GroningenHarenThe Netherlands

Personalised recommendations