Immunogenetics

, Volume 25, Issue 5, pp 323–328 | Cite as

A transposable epitope of HLA-137, B40 molecules

  • Judy P. Ways
  • David A. Lawlor
  • Anne M. Wan
  • Peter Parham
Article

Abstract

The monoclonal antibody M1340.2 defines a novel subtype of HLA-1340 that is expressed by the Sweig cell line. This molecule, called HLA-B40*, lacks an antigenic determinant that is common to HLA-137 and the HLA-Bw60 subtype of HLA-1340. Genes encoding HLA-B40* and HLA-BW60 have now been isolated and the amino acid sequences of these proteins compared with other HLA-13 locus molecules. These results show that HLA-B40* is a unique protein which differs from HLA-BW60 by eight amino acid substitutions. Comparison of the sequences for HLA-B40*, -Bw60, and -B7 localizes the MB40.2 epitope to a cluster of three substitutions at positions 177, 178, and 180 at the end of the α2 domain. Gene conversion or reciprocal recombination are postulated to have transferred this cluster of substitutions, and their associated epitope, during the evolution of HLA-B locus genes. The epitope may consist of an a helical segment which is exclusively found on MB40.2-positive molecules.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chou, P. Y. and Fasman, G. D.: Prediction of the secondary structure of proteins from their amino acid sequence. Adv. Enzymol. 47: 45–148, 1978PubMedGoogle Scholar
  2. Coppin, H. L., Denny, D. W., Weissman, S. M., and McDevitt, H. O.: HLA-B locus polymorphism: Studies with a specific hybridization probe. Proc. Natl. Acad. Sci. U.S.A. 82: 8614–8618, 1985PubMedGoogle Scholar
  3. Ezquerra, A., Bragado, R., Vega, M. A., Strominger, J. L., Woody, J., and Lopez de Castro, J. A.: Primary structure of papain-solubilized human histocompatibility antigen HLA-1327. Biochemistry 24: 1733–1741, 1985PubMedGoogle Scholar
  4. Fellous, M., Nit, U., Wallach, D., Merlin, G., Rubinstein, M., and Revel, M.: Interferon-dependent induction of mRNA for the major histocompatibility antigens in human fibroblasts and lymphoblastoid cells. Proc. Natl. Acad. Sci. U.S.A. 79: 3082–3086, 1982PubMedGoogle Scholar
  5. Goldmann, S. F., Middleton, D., and Kennedy, L. J.: Antigen report. HLA-Bw60. In E. D. Albert, M. P. Baur, and W. R. Mayr (eds.): Histocompatibility Testing 1984, p. 167, Springer-Verlag, Berlin, 1984aGoogle Scholar
  6. Goldmann, S. F., Middleton, D., and Kennedy, L. J.: Antigen report. HLA-Bw61. In E. D. Albert, M. P. Baur, and W. R. Mayr (eds.): Histocompatibility Testing 1984, pp. 168–169, Springer-Verlag, Berlin, 1984bGoogle Scholar
  7. Holmes, N. and Parham, P.: Exon shuffling in vivo can generate novel HLA class I molecules. EMBO J. 4: 2849–2854, 1984Google Scholar
  8. Kottman, A. H., Seemann, G. H. A., Guessow, H. D., and Roos, M. H.: DNA sequence of the coding region of the HLA-B44 gene. Immunogenetics 23: 396–400, 1986PubMedGoogle Scholar
  9. Krangel, M. S., Biddison, W. E., and Strominger, J. L.: Comparative structural analysis of HLA-A2 antigens distinguishable by cytotoxic T lymphocytes. II. Variant DK1: Evidence for a discrete CTL recognition region. J. Immunol. 130: 1856–1862, 1983PubMedGoogle Scholar
  10. Kyte, J. and Doolittle, R. F.: A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105–132, 1982PubMedGoogle Scholar
  11. Lopez de Castro, J. A., Bragado, R., Strong, D. M., and Strominger, J. L.: Primary structure of papain-solubilized human histocompatibility antigen HLA-1340 (-Bw60). An outline of alloantigenic determinants. Biochemistry 22: 3961–3969, 1983PubMedGoogle Scholar
  12. Nathenson, S. G., Geliebter, J., Pfaffenbach, G., and Zeff, R. A.: Murine major histocompatibility complex class I mutants: Molecular analysis and structure-function implications. Annu. Rev. Immunol. 4: 471–502, 1986CrossRefPubMedGoogle Scholar
  13. Orr, H. T., Lopez de Castro, J. A., Lancet, D., and Strominger, J. L.: Complete amino acid sequence of a papain-solubilized human histocompatibility antigen, HLA-137. II. Sequence determination and search for homologies. Biochemistry 18: 5711–5720, 1979PubMedGoogle Scholar
  14. Parham, P.: Monoclonal antibodies against two separate alloantigenic sites of HLA-1340. Immunogenetics 13: 509–527, 1981PubMedGoogle Scholar
  15. Parham, P.: Antigenic determinants of the HLA-137 molecule; Bw6- and B7-specific determinants are spatially separate. Immunogenetics 18: 1–16, 1983PubMedGoogle Scholar
  16. Parham, P.: The binding of monoclonal antibodies to cell surface molecules: Quantitative analysis of the reactions and cross-reactions of an antibody (MB40.3) with four HLA-B molecules. J. Biol. Chem. 159: 13077–13083, 1984aGoogle Scholar
  17. Parham, P.: Changes in conformation with loss of alloantigenic determinants of a histocompatibility antigen (HLA-137) induced by monoclonal antibodies. J. Immunol. 132: 2975–2983, 1984bPubMedGoogle Scholar
  18. Parham, P. and Bodmer, W.: Monoclonal antibody to a human histocompatibility alloantigen, HLA-A2. Nature 276: 397–399, 1978PubMedGoogle Scholar
  19. Parham, P., Antonelli, P., Herzenberg, L. A., Kipps, T. J., Fuller, A., and Ward, F. E.: Further studies on the epitopes of HLA-137 defined by murine monoclonal antibodies. Hum. Immunol. 15: 44–67, 1986CrossRefPubMedGoogle Scholar
  20. Radka, S. F., Kostyu, D. D., and Amos, D. B.: A monoclonal antibody directed against the HLA-Bw6 epitope. J. Immunol. 128: 2804–2806, 1982PubMedGoogle Scholar
  21. Rojo, S., Lopez de Castro, J. A., Aparicio, P., Van Seventer, G., and Bragado, R.: HLA-1327 antigenicity: Antibodies against the chemically synthesized 63–84 peptide from HLA-1327.1 display alloantigenic specificity and discriminate among HLA-1327 subtypes. J. Immunol. 137: 904–910, 1986PubMedGoogle Scholar
  22. Russo, C., Ng, A.-K., Pellegrino, M. A., and Ferrone, S.: The monoclonal antibody CR11-351 discriminates HLA-A2 variants identified by T cells. Immunogenetics 18: 23–35, 1983PubMedGoogle Scholar
  23. Seemann, G. H. A., Rein, R., Brown, C. S., and Ploegh, H. L.: Gene conversion like mechanisms may generate polymorphism in human class I genes. EMBO J. 5: 547–552, 1986PubMedGoogle Scholar
  24. Simpson, P. A., Spudich, J. A., and Parham, P.: Monoclonal antibodies prepared against dictyostelium actin: Characterization and interactions with actin: J. Cell Biol. 99: 287–295, 1984CrossRefPubMedGoogle Scholar
  25. Taketani, S., Krangel, M. S., Spits, H., de Vries, J., and Strominger, J. L.: Structural analysis of an HLA-B7 antigen variant detected by cytotoxic T lymphocytes. J. Immunol. 133: 816–821, 1984PubMedGoogle Scholar
  26. Walker, L. E., Ketler, T. A., Houghten, R. A., Schulz, G., Chersi, A., and Reisfeld, R. A.: Human major histocompatibility complex class I antigens: Residues 61–83 of the HLA-B7 heavy chain specify an alloreactive site. Proc. Natl. Acad. Sci. U.S.A. 82: 539–542, 1985PubMedGoogle Scholar
  27. Wan, A. M., Ennis, P., Parham P., and Homes, N.: The primary structure of HLA-A32 suggests a region involved in formation of the Bw4/Bw6 epitopes. J. Immunol. 137: 3671–3674, 1986PubMedGoogle Scholar
  28. Ways, J. P., Coppin, H. L., and Parham, P.: The complete primary structure of HLA-Bw58. J. Biol. Chem. 260: 11924–11933, 1985PubMedGoogle Scholar
  29. Ways, J. P., Rothbard, J. B., and Parham, P.: Amino acid residues 56 to 69 of HLA-A2 specify an antigenic determinant shared by HLA-A2 and HLA-B17. J. Immunol. 137: 217–222, 1986PubMedGoogle Scholar
  30. Wigler, M., Pellicer, A., Silverstein, S., and Axel, R.: Biochemical transfer of single-copy eucaryotic genes using total cellular DNA as donor. Cell 14: 725–731, 1978CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Judy P. Ways
    • 1
  • David A. Lawlor
    • 1
  • Anne M. Wan
    • 1
  • Peter Parham
    • 1
  1. 1.Department of Cell BiologyStanford UniversityStanfordUSA

Personalised recommendations