Immunogenetics

, Volume 25, Issue 5, pp 313–322

Isolation, expression, and the primary structure of HLA-Cw1 and HLA-Cw2 genes: Evolutionary aspects

  • Detlef Güssow
  • Rita S. Rein
  • Ingeborg Meijer
  • Wout de Hoog
  • Gerhard H. A. Seemann
  • Frans M. Hochstenbach
  • Hidde L. Ploegh
Article

Abstract

The HLA-Cw1 and -Cw2 genes were identified in a genomic library and their products characterized by biochemical methods. The HLA-Cw and -Cw2 genes, upon transfection in mouse L cells, give rise to class I antigen heavy chains that associate with neither mouse nor human beta-2 microglobulin. They are indistinguishable in isoelectric point from polypeptides identified as HLA-Cw1 and -Cw2 in human cells. The nucleotide sequence of HLA-Cw1 and -Cw2 and their comparison with HLA-Cw3, the only other known HLA-C sequence, reveal a characteristic pattern of locus-specific amino acids. A comparison of 13 different human class I primary structures leads us to speculate that the most variable region in HLA class I antigens, positions 61–83, could assume an alpha helical structure of critical importance for class I antigen function. The locus specificity and the higher degree of intralocus conservation in the COON-terminal region, especially in the transmembrane and cytoplasmic domains, must reflect evolutionary ancestry rather than positive selection. In view of the pattern and types of substitutions observed for HLA-C locus products, their function as immune response gene products is questioned.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biggin, M., Gibson, T., and Hung, G.: Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc. Natl. Acad. Sci. U.S.A. 80: 3963–3965, 1983PubMedGoogle Scholar
  2. Biro, P. A., Pan, J., Sood, A. K., Kole, R., Reddy, V. B., and Weissman, S. M.: Sequences of human repetitive DNA, non-globulin genes, and major histocompatibility locus genes. III. The major histocompatibility complex. Cold Spring Harbor Symp. Quant. Biol. 47: 1079–1086, 1983PubMedGoogle Scholar
  3. Chou, P. Y. and Fasman, G. D.: Prediction of protein conformation. Biochemistry 13: 222–245, 1974PubMedGoogle Scholar
  4. Duceman, B. W., Ness, D., Rende, R., Chorney, M. J., Srivastava, R., Greenspan, D. S., Pan, J., Weissman, S. M., and Grumet, F. C.: HLA-JY328: Mapping studies and expression of a polymorphic HLA class I gene. Immunogenetics 23: 90–99, 1986PubMedGoogle Scholar
  5. Guild, B. C., Erikson, R. L., and Strominger, J. L.: HLA-A2 and HLA-B7 antigens are phosphorylated in vitro by Rous sarcoma virus kinase (pp66v-src) at a tyrosine residue encoded in a highly conserved exon of the intracellular domain. Proc. Natl. Acad. Sci. U.S.A. 80: 2894–2898, 1983PubMedGoogle Scholar
  6. Klein, J. and Figueroa, F.: The evolution of class I MHC genes. Immunol. Today 7: 41–44, 1986aGoogle Scholar
  7. Klein, J. and Figueroa, F.: Evolution of the major histocompatibility complex. Crit. Rev. Immunol., in press, 1986bGoogle Scholar
  8. Koller, B. H. and Orr, H. T.: Cloning and complete sequence of an HLA-A2 gene: Analysis of two HLA-A alleles at the nucleotide level. J. Immunol. 134: 2727–2733, 1985PubMedGoogle Scholar
  9. Koller, B. H., Sidwell, B., DeMars, R., and Orr, H. T.: Isolation of HLA locus-specific DNA probes from the 3′ untranslated region. Proc. Natl. Acad. Sci. U.S.A. 81: 5175–5178, 1984PubMedGoogle Scholar
  10. Kottmann, A. H., Seemann, G. H. A., Güssow, H. D., and Roos, M. H.: DNA sequence of the coding region of the HLA-B44 gene. Immunogenetics 23: 396–400, 1986PubMedGoogle Scholar
  11. Lancet, D., Parham, P., and Strominger, J. L.: Heavy chain of HLA-A and HLA-B antigens is conformationally labile: A possible role for β2-microglobulin. Proc. Natl. Acad. Sci. U.S.A. 76: 3844–3848, 1979PubMedGoogle Scholar
  12. Lew, A. M., Margulies, D. H., Maloy, W. L., Lillehoj, E. P., McClusky, J., and Coligan, J. E.: Alternative protein products with different carboxy termini from a single class I gene, H-2Kb. Proc. Natl. Acad. Sci. U.S.A. 83: 6084–6088, 1986PubMedGoogle Scholar
  13. Lopez de Castro, J. A., Strominger, J. L., Strong, D. M., and Orr, H. T.: Structure of crossreactive human histocompatibility antigens HLA-A28 and HLA-A2: Possible implications for the generation of HLA polymorphism. Proc. Natl. Acad. Sci. U.S.A. 79: 3813–3817, 1982PubMedGoogle Scholar
  14. Lopez de Castro, J. A., Bragado, R., Strong, D. H., and Strominger, J. L.: Primary structure of papain-solubilized human histocompatibility antigens HLA-1340 (-Bw40). An outline of alloantigenic determinants. Biochemistry 22: 3961–3969, 1983PubMedGoogle Scholar
  15. Lopez de Castro, J. A., Barbosa, J. A., Krangel, M. S., Biro, P. A., and Strominger, J. L.: Structural analysis of functional sites of HLA class I antigens. Immunol. Rev. 85: 147–168, 1985Google Scholar
  16. Malissen, M., Malissen, B., and Jordan, B. R.: Exon/intron organisation and complete nucleotide sequence of an HLA gene. Proc. Natl. Acad. Sci. U.S.A. 79: 893–897, 1982PubMedGoogle Scholar
  17. Messing, J.: New M13 vectors for cloning. Methods Enzymol. 101: 20–78, 1983PubMedGoogle Scholar
  18. Nathenson, S. G., Geliebter, J., Pfaffenbach, G. M., and Zeff, R. A.: Murine major histocompatibility complex class I mutants: Molecular analysis and structure function implications. Annu. Rev. Immunol. 4: 471–502, 1986CrossRefPubMedGoogle Scholar
  19. Neefjes, J. J., Breur-Vriesendorp, B. S., van Seventer, G. A., Ivanyi, P., and Ploegh, H. L.: An improved biochemical method for the analysis of HLA-class I antigens. Definition of new HLA-class I subtypes. Hum. Immunol. 16: 169–181, 1986aCrossRefPubMedGoogle Scholar
  20. Neefjes, J. J., Doxiadis, I., Stam, N. J., Beckers, C. J., and Ploegh, H. L.: An analysis of class I antigens of man and other species by one-dimensional IEF and immunoblotting. Immunogenetics 23: 164–171, 1986bPubMedGoogle Scholar
  21. N'Guyen, C., Sodoyer, R., Trucy, J., Strachan, T., and Jordan, B. R.: The HLA-Aw24 gene: Sequence, surroundings and comparison with the HLA-A2 and HLA-A3 genes. Immunogenetics 21: 479–489, 1985PubMedGoogle Scholar
  22. Orr, H. T., Bach, F. H., Ploegh, H. L., Strominger, J. L., Kavathas, P., and DeMars, R.: Use of HLA loss mutants to analyse the structure of the human major histocompatibility complex. Nature 296: 454–456, 1982PubMedGoogle Scholar
  23. Ploegh, H. L., Cannon, L. E., and Stromfinger, J. L.: Cell free translation of the mRNA for the heavy and light chains of HLA-A and HLA-B antigens. Proc. Natl. Acad. Sci. U.S.A. 76: 2273–2277, 1979PubMedGoogle Scholar
  24. Ploegh, H. L., Orr, H. T., and Strominger, J. L.: Molecular cloning of a human histocompatibility antigen cDNA fragment. Proc. Natl. Acad. Sci. U.S.A. 77: 6081–6085, 1980PubMedGoogle Scholar
  25. Ploegh, H. L., Orr, H. T., and Strominger, J. L.: Major histocompatibility antigens: The human (HLA-A, -B, -C) and murine (H-2K, H-2D) class I molecules. Cell 24: 287–299, 1981CrossRefPubMedGoogle Scholar
  26. Rein, R. S., Seemann, H. A., Stam, N., Neefjes, J. J., and Ploegh, H. L.: Association with beta 2-microglobulin controls expression of transfected human class I genes. J. Immunol., in press, 1987Google Scholar
  27. Sanger, F., Nicklen, S., and Coulson, A. R.: DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A. 74: 5463–5467, 1977PubMedGoogle Scholar
  28. Seemann, G. H. A., Rein, R. S., Brown, C. S., and Ploegh, H. L.: Gene conversion like mechanisms may generate polymorphism in human class I genes. EMBO J. 5: 547–552, 1986PubMedGoogle Scholar
  29. Sodoyer, R., Damotte, M., Delovitch, T. L., Trucy, J., Jordan, B. R., and Strachan, T.: The complete nucleotide sequence of a gene encoding a functional human class I histocompatibility antigen (HLA-Cw3). EMBO J. 3: 879–885, 1984PubMedGoogle Scholar
  30. Sood, A. K., Pan, J., Biro, P. A., Pereira, D., Srivastava, R., Reddy, V. B., Duceman, B. W., and Weissman, S. M.: Structure and polymorphism of class I MHC antigen mRNA. Immunogenetics 22: 101–121, 1985PubMedGoogle Scholar
  31. Southern, P. J. and Berg, P.: Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. App. Genet. 1: 327–341, 1982Google Scholar
  32. Srivastava, R., Duceman, B. W., Biro, P. A., Sood, A. K., and Weissman, S. M.: Molecular organisation of the class I genes of the human major histocompatibility complex. Immunol. Rev. 84: 93–121, 1985aPubMedGoogle Scholar
  33. Srivastava, R., Duceman, B. W., Biro, P. A., Chorney, M. J., Sood, A., Greenspan, D. S., Pan, J., and Weissman, S. M.: New approaches and results in cloning of the human major histocompatibility complex. In B. Pernis and H. J. Vogel (eds.): Cell Biology of the Major Histocompatibility Complex, pp. 27–35, Harcourt Brace Jovanovich, New York, 1985bGoogle Scholar
  34. Stam, N. J., Spits, H., and Ploegh, H. L.: Monoclonal antibodies raised against denatured HLA-B locus heavy chains permit biochemical characterization of certain HLA-C locus products. J. Immunol. 137: 2299–2306, 1986PubMedGoogle Scholar
  35. Strachan, T., Sodoyer, R., Damotte, M., and Jordan, B. R.: Complete nucleotide sequence of a functional HLA class I gene, HLA-A3. Implications for the evolution of HLA genes. EMBO J. 3: 887–894, 1984PubMedGoogle Scholar
  36. Strachan, T., Dodge, A. B., Smillie, D., Dyer, P. A., Sodoyer, R., Jordan, B. R., and Harris, R.: An HLA-C-specific DNA probe. Immunogenetics 23: 115–120, 1986PubMedGoogle Scholar
  37. Szöts, H., Riethmüller, G., Weiss, E., and Meo, T.: Complete sequence of HLA-1327 cDNA identified through the characterization of structural markers unique to the HLA-A, -B, and -C allelic series. Proc. Natl. Acad. Sci. U.S.A. 83: 1428–1432, 1986PubMedGoogle Scholar
  38. Trägard, L., Curman, B., Wiman, K., Rask, L., and Peterson, P. A.: Chemical, physical-chemical and immunological properties of papain solubilized human transplantation antigens. Biochemistry 18: 2218–2225, 1979PubMedGoogle Scholar
  39. Transy, C., Lalanne, J. L., and Kourilsky, P.: Alternative splicing in the 5′ moiety of the H-2Kd gene transcript. EMBO J. 3: 2383–2386, 1984PubMedGoogle Scholar
  40. Tykocinski, M. L., Marche, P. N., Max, E. E., and Kindt, T. K.: Rabbit class I MHC genes: cDNA clones define full-length transcripts of an expressed gene and a putative pseudogene. J. Immunol. 133: 2261–2269, 1984PubMedGoogle Scholar
  41. Vega, M. A., Bragado, R., Ezquerra, A., and Lopez de Castro, J. A.: Variability and conformation of HLA class I antigens: A predictive approach to the spatial arrangement of polymorphic regions. Biochemistry 23: 823–831, 1984PubMedGoogle Scholar
  42. Ways, J. P., Coppin, H. L., and Parham, P.: The complete primary structure of HLA-Bw58. J. Biol. Chem. 260: 11924–11933, 1985PubMedGoogle Scholar
  43. Wigler, M., Pellicer, A., Silverstein, S., Axel, R., Urlaub, G., and Chasin, L.: DNA-mediated transfer of adenine phosphoribosyl-transferase locus into mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 76: 1373–1376, 1979PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Detlef Güssow
    • 1
  • Rita S. Rein
    • 1
  • Ingeborg Meijer
    • 1
  • Wout de Hoog
    • 1
  • Gerhard H. A. Seemann
    • 1
  • Frans M. Hochstenbach
    • 1
  • Hidde L. Ploegh
    • 1
  1. 1.The Netherlands Cancer InstituteAmsterdamThe Netherlands

Personalised recommendations